
FrameSLT 3.30
User Guide

©2015 West Street Consulting. All rights reserved. Adobe and FrameMaker are registered trademarks of
Adobe Systems, Inc. FrameScript is a registered trademark of Finite Matters, Ltd. XPath is a language
standard developed and maintain by the W3 Consortium. All other marks belong to their respective
owners.

West Street Consulting reserves the right to change its software and documentation without notice. In
addition, West Street Consulting is not responsible for any consequences that result from user, application,
or documentation error. By using this software, you agree to do so at your own risk.

3

FrameSLT 3.30 User Guide

Table of Contents

Chapter 1 Introduction to FrameSLT
What is FrameSLT? .. 9

Who uses FrameSLT and when? ... 9

Getting started with FrameSLT ... 10

FrameSLT WARNING! .. 10

Preferences .. 10

Translation of the FrameSLT interface ... 10
Selecting a language ... 11
Language configuration .. 11
Additional language utilities ... 12

Chapter 2 About FrameSLT XPath
About XPath ... 13

XPath quick primer ... 13

Nodes vs. elements—Terminology ... 15

Supported axes .. 15

Special flow-related axes .. 17

Special “fmprop” axis ... 18

Special book- and file-related axes ... 20

Abbreviated axes .. 23

Supported logical test operators .. 23

Supported functions .. 24
Node position functions .. 24
Node content functions ... 24
Boolean functions ... 25

Node test wildcards ... 25

EDD-applied prefixes/suffixes and node testing .. 25

Unsupported syntax .. 26

Limitations and known issues ... 26
Testing element node text ... 27
Finding text() nodes with no siblings .. 27
Comparing two nodes without a bracketed predicate ... 27

FrameSLT XPath examples .. 28
“Single document” queries ... 28
Cross-book and cross-file queries ... 31
Flow-related queries .. 32

Chapter 3 The Node Wizard and Other Utilities
The Node Wizard .. 35

Node Wizard searching ... 35
Match First, Match Next, and context nodes .. 35
Match All ... 36
XPath favorites .. 36
About the Node Wizard and document flows ... 37
About the Node Wizard and file opening .. 37
Changing documents/elements during a query ... 38

4 FrameSLT 3.30

Match history ...38
Attribute nodes ...38

Performing node actions ..39
Element actions ..39
Attribute actions ...41
Important warning about node actions ..44
“Perform Action(s) and Find Next” button ..44
Query behavior during “Perform Actions On All” operations ...44
Element actions that preclude attribute actions ...44
Wrapping elements and performing an attribute action ...44
A word on conditional text ..45

XPath parsing ..45

Node Wizard scripts ..45
About Node Wizard scripts ...46

About subevents ...46
About document versus whole-book processing ...47
Element/attribute actions supported by scripts only ..47

About the script settings file ..48
Running Node Wizard scripts within FrameMaker ...49
Writing and editing scripts - General information ...50
About parameters ...50
Script name and description ..50
Script-level general settings ..51
Autorun triggers ...53
Event-level details ...54

Disabling events and actions ...54
Event name and description ...54
XPath expression ...54
Flows to process ..57
Element actions ..57
Attribute actions ...60
String operations ..62
Numeric operations ..63
“Other” actions ..64

FrameSLT condition management ..69
Condition management settings ..70
Processing details ..73

Document- and book-wide actions ...73
Element-level actions ..73

Examples of expressions and settings ...74
Important note about conditions management features versus the Node Wizard75
Tips on condition management ..76

Chapter 4 Transformations
About FrameSLT vs. XSLT ...77

Required steps to perform transformations ...78

About stylesheets and transformations ..78

Customizing an EDD to allow transformation elements ...79

Launching transformations ..80

Editing transformation elements ...80

FrameSLT 3.30 5

Source file details ..80
Querying the “current” document ...80
Relative vs. absolute paths ..81
Opening, closing, and saving source files ...81
Use of parameters in source file paths ...81

About starting contexts ..82

About cascading contexts ..83

About preserving transformation elements after a transformation ..85

About parameters in XPath expressions ..85

Using “FSLT_template” markers ..86
How “FSLT_template” markers work ...87
Creating the marker type ...87
Adding markers to the stylesheet ..87

Chapter 5
Transformation Element Reference

FSLT_choose ..89
FSLT_choose processing ...90
FSLT_choose attributes ...90
FSLT_choose example ..90

FSLT_copy-of ..91
FSLT_copy-of processing ..91
FSLT_copy-of attributes ..92
FSLT_copy-of example ..92

FSLT_create-xref ..93
FSLT_create-xref processing ...93
Special note on generated cross-references ...93
FSLT_create-xref attributes ...94
FSLT_create-xref example ..94

FSLT_for-each ..95
FSLT_for-each processing ..95
FSLT_for-each attributes ..96
FSLT_for-each example ...96

FSLT_if ..97
FSLT_if processing ..97
FSLT_if attributes ..98
FSLT_if example ..98

FSLT_otherwise ...99
FSLT_otherwise processing ...99
FSLT_otherwise attributes ..99
FSLT_otherwise example ...99

FSLT_param ...99
FSLT_param processing ...99
FSLT_param attributes ...100

FSLT_set-attribute ..100
FSLT_set-attribute processing ..100
FSLT_set-attribute attributes ..101
FSLT_set-attribute example ...101

FSLT_set-marker ...102

6 FrameSLT 3.30

FSLT_set-marker processing ...102
FSLT_set-marker attributes ...103
FSLT_set-marker example ...103

FSLT_sort ...104
FSLT_sort processing ...104
Special note on using FSLT_sort with FSLT_tablerow ..104
FSLT_sort attributes ..105
FSLT_sort example ...105

FSLT_table ...106
FSLT_table structure and requirements ...106

Basic steps for creating a valid FSLT_table structure ..107
Complete FSLT_table structure example ...107
Generating rows with FSLT_tablerow ..108
Sorting generated table rows with FSLT_sort ...109
Other FSLT table component element setups ..109
Checking an FSLT_table structure before transformation ...109

FSLT_table processing ...109
FSLT_table attributes ...109
FSLT_table example ...110

FSLT_tablebody ...110
FSLT_tablebody processing ...110
FSLT_tablebody attributes ..110
FSLT_tablebody example ...110

FSLT_tablecell ...110
FSLT_tablecell processing ...110
FSLT_tablecell attributes ..110
FSLT_tablecell example ...110

FSLT_tableheading ..111
FSLT_tableheading processing ..111
FSLT_tableheading attributes ..111
FSLT_tableheading example ..111

FSLT_tablefooting ..111
FSLT_tablefooting processing ..111
FSLT_tablefooting attributes ..111
FSLT_tablefooting example ..111

FSLT_tablerow ..111
FSLT_tablerow processing ..111
FSLT_tablerow attributes ..112
FSLT_tablerow example ...112

FSLT_tabletitle ...112
FSLT_tabletitle processing ...112
FSLT_tabletitle attributes ...112
FSLT_tabletitle example ...112

FSLT_template ..112
FSLT_template processing ..113

Locations for “source” FSLT_template elements ...113
About the “FSLT_template” flow ..113
Using FSLT_template to facilitate complex re-transformations114

FSLT_template attributes ..114

FrameSLT 3.30 7

FSLT_template example ...114

FSLT_value-of ..116
FSLT_value-of processing ..116
FSLT_value-of attributes ..117
FSLT_value-of example ...117

FSLT_when ...119
FSLT_when processing ...119
FSLT_when attributes ..119
FSLT_when example ...119

Chapter 6 External Calls to FrameSLT
How to send an external call to FrameSLT ...121

General information on external calls ...122

Typical sequences of events ..122

Call reference ..122
AllocateNodeHandlers ...122

Syntax ..122
Usage description ...123
Returns ...123

ChangeCallDelimiter ..123
Syntax ..123
Returns ...123
ChangeCallDelimiter syntax example ..123

ClearScriptParms ...123
Syntax ..124
Returns ...124

DeallocateNodeHandlers ..124
Syntax ..124
Usage description ...124
Returns ...124

FindNextNode ..124
Syntax ..124
Usage description ...125
Returns ...126
Syntax examples ..127
Code sample ...127

GetAppParm ...128
Syntax ..128
Returns ...128
Syntax example ..129

GetScriptParmByte ..129
Syntax ..129
Usage description ...129
Returns ...130
Syntax example ..130

Hello ...130
Syntax ..130
Usage description ...130
Returns ...131
Syntax example ..131

8 FrameSLT 3.30

ParseXPath ...131
Syntax ..131
Usage description ...131
Returns ...132
Syntax example ..132

ResetSequence ..132
Syntax ..132
Usage description ...132
Returns ...133

RetrieveAttrMatch ..133
Syntax ..133
Usage description ...133
Returns ...133
Code sample ...134

RetrieveFileMatch ..135
Syntax ..135
Returns ...135

RunNWScript ...135
Syntax ..135
Usage description ...136
Returns ...136
Syntax example ..137
Code sample ...137

SetAppParm ...137
Syntax ..137
Returns ...138
Syntax example ..138

SetParam ..139
Syntax ..139
Usage description ...139
Returns ...139
Syntax examples ..140

SetScriptParm ..140
Syntax ..140
Usage description ...140
Returns ...140
Syntax example ..140

TransformFile ..141
Syntax ..141
Usage description ...141
Returns ...142
TransformFile syntax examples ...142
TransformFile code samples ..143

Detailed example—Calling FrameSLT (FDK) ...144

Detailed example—Calling FrameSLT (FrameScript) ..146

Using FrameSLT as an ExtendScript external object ..149

FrameSLT 3.30 9

Chapter 1
Introduction to FrameSLT

Thank you for choosing to evaluate or purchase FrameSLT. At West Street Consulting, we are
committed to providing products that serve real needs and helping you get the most out of them.

What is FrameSLT?
FrameSLT is a versatile, XPath-based processor that you can use to perform powerful queries and
structural modifications within structured FrameMaker documents, without ever having to leave the
FrameMaker interface. It includes the FrameSLT Node Wizard, which operates similarly to the
FrameMaker Find/Replace dialog box, but far exceeds existing capabilities to search and
manipulate your structured content. Additionally, it provides a flexible Node Wizard scripting
feature that allows you to build complex and powerful routines for content manipulation and
structural modification.

FrameSLT includes an exposed XPath parser and navigator that you can call with other API clients

and third-party applications such as FrameScript® by Finite Matters Ltd®. Additionally, for
FrameMaker 10 and later, you can call FrameSLT with ExtendScript. With the power of XPath,
your custom applications can easily walk through a structure tree in ways not possible before
without the addition of many lines of complex code.

You can use FrameSLT simply as a search tool, or you can use it to perform sweeping structural
changes and content manipulation. Because FrameSLT has the ability to alter your structure and
content, it is critically important that you read “FrameSLT WARNING!” on page 10 before using the
product.

Who uses FrameSLT and when?
FrameSLT is indispensable for individuals who perform:

• Unstructured-to-structured conversions, especially with respect to the common “clean-up”
stage following the main conversion stage.

• EDD maintenance and migrations. If you require a change to your structure definition(s),
FrameSLT can sweep through dozens of pages of existing content to make the necessary
changes, often in seconds. With FrameSLT, you are no longer shackled to an inadequate EDD
just because you have so much content out there that currently adheres to it.

• Advanced content merging and manipulation. FrameSLT can pick through any structured file
as if it were a database and extract the content for use in any other file. These capabilities
include the ability to seamlessly move content between elements, attributes, markers, and
more.

• Advanced authoring and/or publishing tasks that are not supported by native FrameMaker
features, such as the generation of single-document TOCs.

FrameSLT may or may not be as relevant to the typical author on a daily basis. Its feature set is
more catered to workflow architects; however, its capabilities are quire extensive and may find
their way into many aspects of the authoring and publishing process.

FrameSLT 3.30 10

Getting started with FrameSLT
Because FrameSLT is XPath-based, the Node Wizard is immediately ready for work on your
structured documents, regardless of the EDD you are using. For the Node Wizard, getting started
involves little more than understanding the basics of how the dialog box works. Node Wizard
scripting is also immediately ready for work; however, the concepts involved can be complex and
may require some experience to use effectively.

Note: FrameSLT includes a tutorial for the Node Wizard which may serve as an effective
starting point for understanding the overall theme of the software. After a normal
installation, this tutorial should be in the same folder as this document.

FrameSLT WARNING!
FrameSLT can perform sweeping, irreversible alterations to your structure and content. IT IS
YOUR RESPONSIBILITY TO MAINTAIN THE INTEGRITY OF YOUR DATA. Before using
FrameSLT to manage structure and content, you should be sure to have backups of all working
files. In addition, after using FrameSLT, inspect your files carefully before saving the changes. A
small XPath error can cause a major difference in the outcome.

If you keep backups and inspect your processed files carefully, your risk of data loss is low. In any
case, however, West Street Consulting can not be held responsible for data loss that transpires as
a result of FrameSLT usage, whether by user or application error.

Preferences
FrameSLT includes a set of preferences that affect various operations of the software. These
settings are stored in a text file in the plugin installation folder or your “user profile” folder,
depending on the initialization settings in your FrameSLT.ini file.

To open the file for editing in Notepad, you can select FrameSLT > Open Preferences File. At any
time, you can select FrameSLT > Read Preferences File to refresh the plugin with current
settings in the file.

Note the following:

• Descriptions and instructions for each setting are found within the settings file

• As you become more familiar with FrameSLT, you should review this entire file to be sure that
the settings reflect the environment you want

Translation of the FrameSLT interface
FrameSLT supports customizable translations of its menus, dialog boxes, and messaging, based
on “lookup” files that you can create and edit. When a string is required for a dialog box control or
a message, it looks for that string in one of these lookup files according to the currently active
language. Note the following:

• West Street does not claim support for any foreign language, only that you may add your own
translations as desired. You can use this feature to implement a real language or simply
rename labels, etc. using text that you like better. The plugin installs with a sample “Bogusian”
language intended to serve as a model for setting up another language.

• West Street does not guarantee that any particular feature will work correctly once you
implement a new language. We intend for it to work and will address any problems you find;
however, you should be aware that it is impossible to fully test a feature with a virtually infinite
number of variations/permutations.

• West Street believes that translation features cover about 95% of the strings that are
associated with active features. This means that a small percentage of strings remain fixed in

Chapter 1 Introduction to FrameSLT

FrameSLT 3.30 11

English, especially as related to short prompts and other messaging. Additionally, note that
none of the features scheduled for deprecation support translatable strings, such as the
transformation features.

• West Street believes that the unicode range of character sets is fully supported for
replacement text. The Bogusian sample provides an example of this.

• West Street believes that this feature is generally applicable for specialized use by select
users only. For that reason, this documentation is brief. If you need assistance with translation
features, please contact us and we will be happy to help.

Selecting a language
To select a language, select FrameSLT > Language > Set Language. Any languages that are
properly configured will appear in the list (see “Language configuration” on page 11). A language
change takes effect immediately.

You can also set a default language upon startup in your preferences file (see “Preferences” on
page 10). This setting provides an option to default to the current language in use by the
FrameMaker interface. Again, be aware that any setting in this file must represent a
properly-configured language

Language configuration
For any new language, the plugin requires two lookup files, both of which much reside together in
the plugin installation folder or the settings folder. These files are named as follows, where
language is the case-insensitive language name that will appear in the Set Language dialog
box:

• FrameSLT_Strings_Dialogs_language.fm - The lookup file for strings that appear in
the menus and major dialog boxes, such as the Node Wizard. This file consists of a set of
tables with the English text in the left column and the replacement text in the right. For each
dialog box string, the plugin effectively starts with the English text and attempts to look up the
translation based on the contents of this file.

Note that for these types of strings, the plugin is starting with “built-in” English versions.
Therefore, when set to English, the plugin does not use this file. That is, a file named
FrameSLT_Strings_Dialogs_English.fm will never be used. However, it is always used
for any other language.

• FrameSLT_Strings_General_language.fm - The lookup file for all other strings that
strings that appear in error reports, short interactive prompts, and other places. The strings in
this file are looked up based on an ID string, rather than the full English version. For this type
of file, a FrameSLT_Strings_General_English.fm file does exist and is the source of all
English strings that relate to prompts and messaging.

The two different files with their differing methodologies are required to accommodate how
FrameMaker handles strings with respect to dialog boxes versus other functional areas, when
programming to its API. Further explanation on this subject is beyond the scope of this document.

Once both of these files are properly-named and reside in the installation or settings folder, the
respective language name automatically appears in the Set Language dialog box. Note the
following:

• For new languages, the best approach is to copy the “Bogusian” examples and use them as
templates. Each file contains additional instructions within.

• If you alter the file structure or otherwise make changes beyond that described in this
document or within the files themselves, the results could be completely unpredictable. At
worst, you may cause FrameMaker to crash.

• The strings files can also be stored in MIF format.

Chapter 1 Introduction to FrameSLT

12 FrameSLT 3.30

Additional language utilities
The plugin includes the following additional utilities in the Language menu that may be used
rarely, if at all:

• Create Dialog Strings File - Creates a new dialog and menu strings file with English text only,
ready for translation to a new language.

• Update Dialog Strings File - Attempts to update an active dialog and menu strings with the
latest English strings used by the plugin. You must have a valid strings file currently open. Any
new English strings are added as new rows to the respective tables. Any strings in the file that
appear to be unused are colored red.

Note the following:

• These features were originally intended as a convenience for making updates, but may be
deprecated. Again, it is recommended that you use the Bogusian files as templates instead.

• These features apply to the dialog strings file only. For the general strings file, you must
always use an existing file as a template and all maintenance is done manually.

FrameSLT 3.30 13

Chapter 2
About FrameSLT XPath

To use FrameSLT effectively, you must have a good working knowledge of XPath. You should
review this information thoroughly before using FrameSLT, especially the details on which XPath
components are supported and which are not. Nearly all FrameSLT functions rely on XPath to
navigate the FrameMaker structure tree.

FrameSLT supports a subset of the W3C XPath standard. Supported components should behave
exactly to standard. Use of non-supported components will likely cause parsing errors or
unexpected query results.

Expansion of the FrameSLT-supported XPath is dependent on the needs of users like you. If you
have a need for an XPath component that is currently not supported, we’d like to hear from you at
info@weststreetconsulting.com.

About XPath
The XPath specification, defined by the W3C Consortium, allows querying and navigation within
an XML-style structure tree. It is sometimes considered a simple language in itself and is
frequently used during XML transformations to query source documents for content. Unlike a
“linear” search, XPath allows you to find elements and attributes under very specific conditions,
including considerations of structural hierarchy, positioning, and node content.

XPath is ideal for navigating a FrameMaker structure tree, because the markup of such a tree is
very much analogous to XML markup. Without a language such as XPath, you would be limited to
basic name and content searches provided by the standard FrameMaker Find tool.

There are a wealth of resources available for learning XPath, including the W3C website at
www.w3.org and free tutorials at websites such as www.w3schools.com. Because so many
options are available, this document does not attempt to reproduce a complete XPath reference
here. However, you can get some beginners tips with “XPath quick primer” on page 13. And, you
can see plenty of samples in “FrameSLT XPath examples” on page 28.

XPath quick primer
XPath is a special syntax designed for the express purpose of walking through a structure tree and
finding very specific instances of elements, attributes, and other “nodes.” It is reasonably simple to
understand once you get started.

A node-matching expression is always a series of “axes” and “node tests.” In essence, an axis tells
which way to go, and the node test tells what to look for when you get there. For example, consider
the following simple XPath:

child::Body

This expression says literally, “start at the context node (like an element), look to its children, and
find any Body elements.” Consider the following structure tree:

http://www.w3.org
http://www.w3schools.com

Chapter 2 About FrameSLT XPath

14 FrameSLT 3.30

If the context element were the Section element, that XPath would find its three Body children. If
the context were any other element, nothing would be found. In the FrameSLT Node Wizard, the
currently selected element becomes the default context node. However, the selected element may
not be relevant, if the first axis is a “go-to-root” axis, as explained in the next paragraph.

An important aspect of XPath is the first axis. In the previous example, the first axis (and only axis)
is child:: (go-to-child). So, a starting context must be manually provided (i.e., for the Node
Wizard, the currently-selected element.) However, in many cases, especially with FrameSLT, you
may find yourself using XPath that begins with the special “go-to-root” axis, indicated by a forward
slash (/). This axis instructs the parser to begin at the root of the structure tree, using it as the initial
context. With this axis, the context always starts at the root, and the currently-selected element is
irrelevant.

As an example, the following XPath will find the highest-level element, HLE:
/child::HLE

It is very important to note that the forward slash does not set the HLE as the context... the context
is actually “above” the HLE, at the true “root.” For example, the following XPath will find nothing,
because the only child of the root is the highest level element, HLE:

/child::Section

However, the following expressions will find the Section element:
/child::HLE/child::Section

/descendant::Section

The descendant axis works because the Section is a descendant of the root. In fact, you can find
any element by name with that particular expression. Note that the forward slash only means
“go-to-root” if it is at the beginning. Otherwise, it is the delimiter between axis/node test
components.

XPath also allows “predicates,” which are subexpressions in brackets used for testing something.
You can use any axis in a predicate, and nest predicates within predicates as needed. For
example, the following XPath will find the Section element again, because the predicate tests for
the presence of an Output attribute:

/descendant::Section[attribute::Output]

In this case, the predicate doesn’t care what the value of Output is... only that the attribute exists.
However, you can test values too, for example:

/descendant::Section[attribute::Platform = "Unix"]

Chapter 2 About FrameSLT XPath

FrameSLT 3.30 15

That expression will find the Section, because the node test (Section) matches, and the
predicate is satisfied. However, the following expression will find nothing, because the predicate is
never satisfied:

/descendant::Section[attribute::Platform = "PDF"]

Once this begins to makes sense, take a look at the examples in “FrameSLT XPath examples” on
page 28. Before long, you should be able to master XPath, and see just how versatile and
powerful it is as a structure query tool.

Nodes vs. elements—Terminology
When discussing XML and XPath, the word “node” is used frequently to describe a generic
location type within a structure tree. A node can be a place such as an element, an attribute, or a
namespace... essentially any definable place in the structure tree that a query can step to. As you
study XPath elsewhere, you will find this word used much more frequently than “element” and
“attribute.”

The FrameMaker interface and documentation, though, do not use this word, referring to locations
specifically as elements and attributes. Therefore, the FrameSLT interface and documentation
attempt to maintain this convention. However, when working with XPath, the word “node” is
sometimes impossible to avoid, especially when the type of node is not specific. Therefore, an
effort has been made in this document to adhere to the following terminology conventions:

• Node When used alone, this word generally means “an element or attribute.”

• Element node A FrameMaker element

• Attribute node A FrameMaker attribute

In reality, the term “node” refers more generally to any point within a branching structure where
branches begin, terminate, or propagate. For the purposes of this document, however, an
association with elements and attributes should be sufficient.

Supported axes
FrameSLT supports all standard XPath axes except namespace::. Using the “wildcard” character
to indicate “any non-text node,” the following examples illustrate supported axes:

• attribute::*—Matches all attributes of the context node.

• self::*—Matches the context node.

• child::*—Matches all children of the context node.

• descendant::*—Matches all descendants (children, grandchildren, etc.) of the context
node.

• descendant-or-self::*—Matches all descendants (children, grandchildren, etc.) of the
context node, including the context node.

• parent::*—Matches the parent of the context node.

• ancestor::*—Matches all ancestors (parents, grandparents, etc.) of the context node

• ancestor-or-self::*—Matches all ancestors (parents, grandparents, etc.) of the context
node, including the context node.

• preceding::*—Matches all preceding sibling nodes and all descendants of them, in
document order. For example:

Chapter 2 About FrameSLT XPath

16 FrameSLT 3.30

• preceding-sibling::*—Matches all preceding sibling nodes only, and excludes
descendants, in document order. For example:

• following::*—Matches all following sibling nodes and all descendants of them, in
document order. For example:

Chapter 2 About FrameSLT XPath

FrameSLT 3.30 17

• following-sibling::*—Matches all following sibling nodes only, and excludes
descendants, in document order. For example:

Special flow-related axes
FrameSLT implements the following set of non-standard axes that are designed for matching text
frames, rather than markup nodes:

• flow-body - Match body page flows

• flow-master - Match master page flows

• flow-ref - Match reference page flows

• flow-any - Match any flow

Chapter 2 About FrameSLT XPath

18 FrameSLT 3.30

These axes match the first text frame of the designated flow(s), after which other axes may be
used as normal to drill further into the structure tree of the flow (if present). When using these
axes, it is important to remember that they are matching text frames, not any content within those
frames.

Note: Wildcards are not supported for the node test of flow-related axes. You must specify a
valid flow name.

As an example, the following expression matches the first text frame(s) of all flows named “A” on
the body pages of the document:

flow-body::A

The best way to further understand these axes is through experimentation and additional
examples. For more information, see “Flow-related queries” on page 32.

Special “fmprop” axis
FrameSLT implements a non-standard fmprop axis for querying FrameMaker-specific object
properties. The notation is similar to standard W3C-defined axes, but rather than indicating
movement towards a node in the structure tree, it directs the retrieval of some property associated
with the current element node (that is, the context node).

As an example, the following expression will match all elements that have the “Body” paragraph
format applied to the underlying paragraph, or the first underlying paragraph if the element wraps
multiple paragraphs:

//*[fmprop::PgfTag="Body"]

...where PgfTag is the specific notation that indicates a paragraph tag query. As another example,
assuming that Graphic is a graphic element, the following expression matches all Graphic
elements whose underlying anchored frame contains a referenced PNG file:

//Graphic[contains(fmprop::ImportObFile, ".png")]

Note that this evaluation would be case-sensitive, so a file with a .PNG extension would not make
a match, unless the non-standard contains-ci() function were used instead. For more
information, see “Supported functions” on page 24.

Currently, a very small subset of FrameMaker properties is supported by the fmprop axis, as
described in the following table. There are many hundreds of potential properties available for
evaluation, so it is not feasible to implement all of them at once. However, new properties will be
added upon request. If you have a need to query a certain type of property, please contact us and
we may be able to issue you a patch.

Additionally, note the following:

• These properties are only applicable for expressions that match elements within a text flow of
a document. They are not applicable for expressions that match elements within a book
structure tree or expressions that match text frames.

• The syntax of these properties follows the MIF tag format.

Chapter 2 About FrameSLT XPath

FrameSLT 3.30 19

• Most of these properties can also be set using Node Wizard scripts.

fmprop property What is retrieved

FChangeBar Change bar status, either “true” or “false”. It can be used to find
elements whose first paragraph (or parent paragraph, for text-range
elements) is marked with a change bar. This setting is Boolean in
nature and is only applicable with the “true” and “false” arguments.
Examples:

//p[fmprop::FChangeBar="true"]

//title[fmprop::FChangeBar="false"]

ImportObFile Full path of each imported (referenced) file in the underlying anchored
frame. If the test matches a single file, the predicate is considered
satisfied. This property is relevant to graphic elements only. Example:

//Graphic[contains-ci(fmprop::ImportObFile, ".png")]

MTypeName

MText

Marker-related properties of the underlying marker object, only
applicable for marker elements. Any elements that are not markers
are automatically disqualified by these tests. Further descriptions are
as follows:

• MTypeName - The marker type

• MText - The marker text

The following example matches all IndexMarker elements that use
the “Index” type and contain the text “XPath”:

//IndexMarker[fmprop::MTypeName="Index" and
contains(fmprop::MText,"XPath")]

In this example, if the IndexMarker element is not a marker element,
the expression would never match anything, regardless of the text
within the quoted strings.

PageNumInt

PageNumStr

Page number(s) on which element content appears, as follows:

• PageNumInt - The absolute page number, with the first page
starting at 1.

• PageNumStr - The “formatted” page number, as assigned in the
document numbering properties. This value may or may not start
with 1 and may or may not be an integer, according to the
document numbering properties. For example, if numbering is set
to use Roman numerals, this property may retrieve values such as
i, ii, iii, iv, etc.

Note that these properties will return multiple values if the element
content spans multiple pages. Consider the following examples:

//*[fmprop::PageNumInt = 1]

...matches any element with any content on the first page.

//*[fmprop::PageNumInt > 1]

...matches any element with any content on any page after the first.

//*[fmprop::PageNumInt = 1 and fmprop::PageNumInt = 2]

...matches any element with content that spans pages 1 and 2.

PgfTag Paragraph tag assigned to the span of text that the element wraps.
Example:

//*[fmprop::PgfTag="Body"]

Chapter 2 About FrameSLT XPath

20 FrameSLT 3.30

Special book- and file-related axes
FrameSLT implements the following non-standard axes that allow a query to traverse from
documents to books and vice-versa, and directly from one file to another. For example, if you want
to perform operations on a whole book using the Node Wizard or Node Wizard scripts, you would
need to use one or more of these axes.

Note: The behavior of these axes can be difficult to understand. However, they are very
important for advanced FrameSLT usage. If you need assistance with expression

TblTag Table format tag of the current table, only applicable for table
component elements. Any elements that are not table components are
automatically disqualified by this test. Do not use this property to test
paragraph container elements inside table cells; rather, use the
ancestor axis to test the ancestor cell, row, or table instead.
Example:

//Table[fmprop::TblTag="Ruling"]

In the previous example, if Table elements are not table components,
the expression will never match anything, regardless of the text within
the quotation marks:

XRefName

XRefSrcText

XRefSrcFile

Cross-reference-related properties of the underlying cross-reference
object, only applicable for cross-reference elements. Any elements
that are not cross-references are automatically disqualified by these
tests. Further descriptions are as follows:

• XRefName - The cross-reference format.

• XRefSrcText - The reference ID; that is, the value of the
“IDReference” attribute of cross-reference element.

• XRefSrcFile - The source file that contains the destination of
the cross-reference. If the cross-reference is internal to the
document, the query returns an empty string.

The following example matches all xref elements that use the
“Heading on page” format and have destinations within the current
document:

//xref[fmprop::XRefName="Heading on page" and
fmprop::XRefSrcFile=""]

The following example matches all xref elements whose destination
is located in the external file “somefile.fm”:

//xref[contains(fmprop::XRefSrcFile,"somefile.fm")]

In both examples, if the xref element is not a cross-reference
element, the expressions would never match anything, regardless of
the text within the quoted strings.

fmprop property What is retrieved

Chapter 2 About FrameSLT XPath

FrameSLT 3.30 21

syntax, please contact West Street. For extended examples, see “Cross-book and
cross-file queries” on page 31.

Axis Behavior

fmbook Matches:

• The highest-level element (HLE) of the active book

-or-

• If no book is active, the HLE of the first book that can be
associated with the active document

-or-

• Nothing, if no corresponding book can be found or no document is
active at all

This axis is the primary workhorse for stepping from a document tree
into a book structure tree, noting that it goes straight to the book HLE
and does not consider any current context. Element names are
currently not considered, so the node test should always be simply an
asterisk (*). For example, the following simple expression is valid and
matches a book HLE:

fmbook::*

This expression will match the book HLE if the book is active or any of
its chapters are active. Again, note that the current element selection
or insertion point location is not relevant.

fmcomp Matches the component-level element in book structure tree for the
currently-active document. That is, it searches for an open book that
contains the currently-active document as a chapter, then matches the
respective component element in book structure tree. If the context is
already a book structure tree, it matches nothing.

This axis is an alternative for moving from a document structure tree to
a book. In most cases, fmbook:: may be more appropriate. Note
that:

• This axis does not consider element names; therefore, the node
test should always be an asterisk (*)

• Like fmbook::, the axis will match the component element
regardless of the current context in the document. That is, the
context does not need to be the document HLE.

Chapter 2 About FrameSLT XPath

22 FrameSLT 3.30

The following example matches all Body elements in an entire book, regardless of whether the
book or a chapter file is currently active. It includes a diagram of how the axes are working. For
more examples, see “Cross-book and cross-file queries” on page 31.

fmchap Matches the HLE of the document associated with the current book
component element; that is, the corresponding chapter file. It only
matches if:

• The current context is a component-level element within a book
structure tree

• The associated chapter is currently open, unless the expression is
being used by a feature that also supports automatic file opening,
such as Node Wizard scripts

For example, assuming that a book is active, the following expression
will match the HLEs of all chapter documents of the book:

//*/fmchap::*

If no book is active, the expression would match nothing. Note the
following:

• This axis does not consider element names; therefore, the node
test should always be an asterisk (*).

• This axis matches HLEs in the main flow only. You cannot step
from a book into any flow other than the main flow.

fmfile Matches the HLE of the file specified as the node test. You can
specify:

• An absolute path

• A relative path (relative the currently-active file)

• The filename of any open file, regardless of its actual location in
the file system

For example, the following expression matches the HLE of the file
somefile.fm:

fmfile::somefile.fm

Note the following:

• The axis is valid for both document and book files. For document
files, the axis will match the HLE of the main flow only, not any
other flow.

• If path separators are required, use forward slashes, for example:

fmfile::C:/MyDocs/somefile.fm

• If the path contains any whitespace, you must enclose it in quotes,
for example:

fmfile::"C:/My Docs/some file.fm"

• The target file must be currently open, unless the feature using the
expression provides file-opening capabilities, such as Node
Wizard scripts;

Axis Behavior

Chapter 2 About FrameSLT XPath

FrameSLT 3.30 23

Abbreviated axes
FrameSLT supports most XPath abbreviations for supported axes and functions, as shown in the
following examples. If not shown, the abbreviation is not supported.

Supported logical test operators

Examples:

child::Para[position() >= 5] Select all Para children in the fifth position or higher.

Heading[. != "This is a heading"] Select all Heading children that do not contain the
text “This is a heading.”

fmbook::*//*/fmchap::*//Body

fmbook – Matches
the book HLE.

Starting from the context of the book
HLE, matches all descendant-or-self
elements. That is, all elements in the
book structure tree.

fmchap – For any elements matched by the
previous axis that happen to be component-
level elements, matches the HLE of the
corresponding chapter (document) file.

Starting from the context of the document
HLE, matches all descendent-or-self
elements that are Body elements. The
behavior is identical to a scenario where you
had the document HLE selected, then issued:

descendant-or-self::Body

Abbreviated syntax Equivalent long version

/Section/Para /child::Section/child::Para

/Section[@Output = "PDF"] Section[attribute::Output = "PDF"]

//Section/Para /descendant-or-self::Section/child::Para

. self::node()

.. parent::node()

/Section[5] /child::Section[position() = 5]

/Body[last()] child::Body[position() = last()]

Operator Meaning

= or == equals

!= does not equal

> greater than

< less than

>= greater than or equal to

<= less than or equal to

Chapter 2 About FrameSLT XPath

24 FrameSLT 3.30

Conditional[@Output = "PDF"] Select all Conditional children that have an Output
attribute, and at least one of the values is PDF.

Supported functions
FrameSLT XPath supports the following functions:

• position()

• last()

• contains()

• contains-ci()

• starts-with()

• starts-with-ci()

• not()

The following sections describe these functions in more detail.

Node position functions
FrameSLT supports the following position-related functions:

• position() Returns an element node’s position in a branch relative to its siblings. The
behavior of this function differs according to the most recent previous axis. See the W3C
documentation for more information.

• last() Returns the position of the last element node in the branch containing the context
element node

For example, a test for position() = 3 would only match if the element were in the third
position. Or, a test for last() = 3 would only match if the element were on last on a branch and
in the third position.

In an expression, the order of functions and operational terms is unimportant. For example,
position() = 3 means the same as 3 = position().

For more detailed examples, see “FrameSLT XPath examples” on page 28.

Node content functions
FrameSLT supports the following content-related functions:

• contains(x,y) Returns the string “true” if the string “x” contains the string “y”, otherwise
returns the string “false”. This function is case-sensitive.

• contains-ci(x,y) Returns the string “true” if the string “x” contains the string “y”, otherwise
returns the string “false”. This function is not case-sensitive.

• starts-with(x,y) Returns the string “true” if the string “x” starts with the string “y”, otherwise
returns the string “false”. This function is case-sensitive.

• starts-with-ci(x,y) Returns the string “true” if the string “x” starts with the string “y”, otherwise
returns the string “false”. This function is not case-sensitive.

Note: contains-ci() and starts-with-ci() are not part of the W3C XPath
recommendation. They are “add-on” functions provided with FrameSLT for your
convenience.

All of these functions require two arguments, which can either be a literal string or a node test. In
the case of a node test, the content of the matched node becomes the string for comparison when
the function is evaluated. If any node test for any argument fails, the function will return “false.”

As an example, the following function will return “true” if a child Heading element contains the text
“mytext”:

Chapter 2 About FrameSLT XPath

FrameSLT 3.30 25

contains(Heading,"mytext")

The following function will return “true” if the current context node contains this text:
contains(.,"mytext")

Functions such as these are used in predicates, and if a string comparison operator is missing, the
parser assumes a match of “true” to satisfy the predicate. Therefore, the following XPath
expressions are functionally equivalent:

//*[contains(., "mytext")]

//*[contains(., "mytext") = "true"]

//*[contains(., "mytext") != "false"]

These expressions will all match any element in the tree that contains the text string “mytext”.

For more detailed examples, see “FrameSLT XPath examples” on page 28.

Boolean functions
FrameSLT supports the following Boolean-related function:

not() Returns either the string “true” or “false”, intending to represent the opposite of the
return of its argument.

not() always takes a single argument. If the argument is a node test (that is, returns a node
value), the function will return “false” if a node is found, otherwise it returns “true”. For example, the
following function will return “true” only if a child Heading element does not exist, with respect to
the current context:

not(Heading)

Or as another example, the following function will return true only if the context element itself is not
named Heading:

not(self::Heading)

If the argument returns a string value, not() will return “true” only if the return string is empty or
equals “false”. For example, the following functions will return “true”:

not("")

not("false")

Besides literal strings, any argument that returns a literal string, such as another function, is
evaluated in the same fashion. For example, the following function will return “true” only if the
context node does not contain the text “mytext”:

not(contains(.,"mytext"))

The not() function is a powerful tool that can make XPath queries more precise, but the logic can
quickly become complex. For more detailed examples, see “FrameSLT XPath examples” on
page 28.

Node test wildcards
FrameSLT supports the asterisk (*) wildcard for node testing, which indicates “any” element node.
For example, the following expression will match every element in the document:

//*

The asterisk will not match text nodes, and it must appear alone. For example, you cannot use:
//B*dy

...to match Body elements.

EDD-applied prefixes/suffixes and node
testing

When you test an element for content, such as in the following expression:

Chapter 2 About FrameSLT XPath

26 FrameSLT 3.30

//Section[Heading = "My Heading"]

...no prefixes or suffixes applied by the EDD are considered. Therefore, in the example above, the
Heading element would have to contain the text “My Heading” as typed by an author, and any
EDD prefixes and/or suffixes are completely ignored.

Unsupported syntax
The following types of XPath syntax are not supported by FrameSLT:

Parenthetical expressions in compound logical tests
Compound logical tests are supported, but not with parenthetical expressions. Therefore,
compound conjunctions are also not supported. For example, the following expression cannot be
processed:

Body[. = "MyText" and (last() or 5)]

Because “back-to-back” predicates are considered to have an “and” logic, the following expression
is also not supported:

Body[. = "MyText"][5 or last()]

However, all of these situations can be replicated in a longer form, using the “self” axis and
multiple predicates, for example:

Body[. = "MyText" and .[last() or 5]]

Abbreviated attribute and value test
The following abbreviated syntax for testing an attribute value is not supported:

Body[@Output("PDF")]

Instead, use the following:
Body[@Output = "PDF"]

Standalone “go-to-root” XPath expressions
The following expression has no relevance in FrameSLT and is therefore not supported:

/

With XSLT, you might see this XPath expression frequently in template elements, such as
<xsl:template match="/">. However, this concept has no application in FrameSLT and
therefore the expression cannot be parsed.

Direct syntax to unique ID attribute nodes
The following syntax, used to select an element node with a particular unique ID attribute, is not
supported:

ElementName("ID")

For example, the following expression, used to find a child Body element with the “MyID” unique
ID, cannot be parsed:

Body("MyID")

If you require a query using a unique ID attribute, use the attribute name directly. For example:
Body[@ID = "MyID"]

Limitations and known issues
The following sections describe known discrepancies between the established XPath standard
and FrameSLT XPath.

Chapter 2 About FrameSLT XPath

FrameSLT 3.30 27

Testing element node text
When testing the text of an element node, only the first paragraph is tested. This includes
expressions with whole string evaluations and expressions with functions such as:

//Section[Heading = "MyHeading"]

//Body[contains(.,"some text")]

//BulletList[starts-with(.,"R")]

This limitation is set because test strings could otherwise become enormously long, such as
testing the text of the highest-level element of a 200 page document. Strings of this length would
adversely affect performance and likely cause crashes. If you need to test the text in a higher-level
element, consider using predicates to test subordinate elements, accomplishing the same goal
while reducing the processing strain. For example, instead of:

//Section[contains(.,"some text")]

...you could use an expression such as:
//Section[descendant::*[contains(.,"some text")]]

or the following equivalent expression:
//Section[contains(*,"some text")]

This limitation does not apply to testing attribute values. For attribute nodes, all text of all values is
always tested.

Finding text() nodes with no siblings
All elements that contain text also have an implied text node, the text itself. While FrameSLT
supports the text() node test, it will not find any text nodes that have no siblings. That is, it a text()
node has no element node siblings, FrameSLT XPath is currently unable to find it.

It is hoped that this issue should rarely be of importance in FrameSLT functionality, because
FrameMaker’s internal representation of structure would make it difficult to support such XPath
constructions. For Node Wizard functions, you can use actions such as “Wrap contents in” and
“Paste clipboard over contents” to work around the issue.

Comparing two nodes without a bracketed predicate
In most cases, FrameSLT supports the shorthand syntax for testing node content, such as:

//Heading = "My Heading"

...which is equivalent to:
//Heading[. = "My Heading"]

The shorter version will not work, however, if you are attempting to compare two node sets. For
example, the following expression is not supported:

//Heading = Body

To accomplish this type of query, you must write it out with an explicit bracketed predicate using a
“to self” node, such as:

//Heading[. = Body]

Normally, these types of comparisons are rare. Note that this limitation applies to the “baseline”
expression only. If the test is already within a predicate, the workaround is not necessary. For
example, the following expression will work fine:

//Section[Heading = Body]

In some cases with long, complex expressions, the shorthand format has exhibited problems. In
these rare cases, the longer format can be used to work around the bug.

Chapter 2 About FrameSLT XPath

28 FrameSLT 3.30

FrameSLT XPath examples
Tips: Always enclose all string literals in single or double quotes. If your literal must contain

double quotes itself, enclose the literal in single quotes, and vice-versa.

Do not enclose integers in quotes.

Don’t forget the parenthesis on functions, such as position(). Without the parenthesis,
FrameSLT will think it is simply looking for an element named position.

Remember that XPath expressions can become long and complex. Any error, even as
small as a single character, will likely cause an expression to fail.

“Single document” queries
The following examples are applicable for querying within a single document; that is, no traversing
across books or between separate files.

Expression Meaning

Body Match all Body children of the context
node.

/Body Match all Body children of the
highest-level element (HLE)

Body[1] Match the first Body child of the context
node.

//Body Match all Body descendants of the HLE,
and the HLE if it is a Body.

/descendant::Body[1] Match all Body descendants of the HLE,
that are the first Body elements in their
respective branches.

Chapter/Section//Body Match all Body descendants of the
Section children of Chapter

Chapter/Section//text() Match all text node descendants of the
Section children of Chapter

Body/parent::Section Match all Body elements with a Section
parent

Body/ancestor::Section Match all Body elements with a Section
parent or at least one Section ancestor

Body/ancestor::Section/ancestor::Section Match all Body elements with at least two
Section ancestors

../Body Match all Body siblings of the context
node

/* Match the highest-level element.

//node() Match every element and text node in the
tree.

//* Match every element node in the tree.

//text() Match every text node in the tree.

//*[@Output] Match every element node in the tree with
an Output attribute

Chapter 2 About FrameSLT XPath

FrameSLT 3.30 29

//*[@Output = "PDF"] Match every element node in the tree with
an Output attribute set to PDF. In
FrameSLT, if the attribute has multiple
values, they are all considered.

//*[@Output != "PDF" or @Output != ""] Match every element node in the tree with
an Output attribute not set to “PDF” (any
of the attribute’s values), or not empty.

//*[@*] Match every element node in the tree that
has at least one attribute, regardless of the
attribute contents, if any.

//Body[../@Output = "PDF"]

or

//Body[..[@Output = "PDF"]]

Match every Body element in the tree
whose parent has an Output attribute set
to “PDF”.

//Body[parent::Section/@Output = "PDF"]

or

//Body[parent::Section[@Output = "PDF"]]

Match every Body element in the tree with
a Section parent, whose Output
attribute is set to “PDF”.

//Body[parent::Section[3]] Match every Body element that has a
Section parent, which is third Section
element on the branch.

//Body[last() = 5] Match every Body element in the tree that
has exactly four Body element siblings.

//*[5 and 4] Matches nothing. An element cannot
occupy two positions.

//*[@Output = "PDF"][5] Matches the same thing as:

//*[@Output = PDF and 5]

//Section[Heading = "This text"] Match every Section element node in the
tree with a Heading child, with the text
“This text”.

//*[position() > 3 or 5 > position()] Matches the same thing as:

//*[4]

//Heading[. = "This text"]

or

//Heading = "This text"

Match every Heading element node with
the text “This text.”

//Heading[. > "MyHeading"] Match every Heading element node with
text alphabetically greater than
“MyHeading”, such as a Heading with the
text “YourHeading.”

Note: This type of test is more
appropriate for text strings with
no spaces. If you attempt to
alphabetically compare strings
with multiple words, the results
may not be as reliable.

Expression Meaning

Chapter 2 About FrameSLT XPath

30 FrameSLT 3.30

//*[@Output = "PDF" or Body = "text" or
5 or 4 or last() or .]

Match every element node in the tree. The
final “to self” (.) test satisfies everything
and negates all other logical tests if they
fail.

//*[contains(.,"mytext")] Match every element node in the tree that
contains the text “mytext”.

//*[contains-ci(.,"mytext")] Match every element node in the tree that
contains the text “mytext”, without regard
for case-sensitivity.

//*[contains(@*,"MyValue")] Match every element node in the tree that
has an attribute that contains the text
“MyValue”.

//*[not(contains(@*,"MyValue"))] Match every element node in the tree that
does not have any attribute that contains
the text “MyValue”.

//Section[not(Body)] Match every Section element in the tree
that does not have a child element named
Body.

//Section[not(Body[contains(&*,
"MyValue")])]

Match every Section element in the tree
that does not have a child element named
Body with any attribute containing the text
“MyValue”.

//*[not(self::*[position() = last()])] Match every element node that is not the
last element in its respective branch.

//Heading[starts-with(.,"R")] Match every Heading element that starts
with the letter “R”.

//Heading[starts-with(.,"R") or
contains(.,"My Heading")]

Match every Heading element that starts
with the letter “R” or contains the text “My
Heading”.

//Section[Heading = Body] Match every Section element that has a
Heading child and a Body child that both
contain exactly the same text.

//Section[contains(Body,Heading)] Match every Section element that has
any Body child that contains the whole text
string wrapped in any Heading child.

Expression Meaning

Chapter 2 About FrameSLT XPath

FrameSLT 3.30 31

Cross-book and cross-file queries
The following examples use the special axes for traversing between files and books, as described
under “Special book- and file-related axes” on page 20.

Expression Behavior

fmbook::*

-or-

/fmbook::*

If the context is an active document:

Matches the highest-level element (HLE) of
the “parent” book for the active document;
that is, the first active book that can be
found that contains the active document as
a chapter. If no applicable book can be
found, it matches nothing.

If the context is an active book:

Matches the HLE of the book.

//fmbook::* Syntax error, because it effectively
represents two axes back-to-back
(“descendent-or-self” and “fmbook”.

fmbook::*/* If the context is an active document:

Matches all child elements of the “parent”
book HLE. In a traditional book without
folders and groups, it would match all
component elements. If no applicable book
can be found, it matches nothing.

If the context is an active book:

Matches all children of the book HLE.

fmbook::*//*/fmchap::* If the context is an active document:

Matches the HLEs of all chapter documents
in the parent book.

If the context is an active book:

Matches the HLEs of all chapter documents
in the book.

fmbook::*//*/fmchap::*[self::Chapter] If the context is an active document:

Matches the HLEs of all chapter documents
in the parent book that have the tag
Chapter.

If the context is an active book:

Matches the HLEs of all chapter documents
in the book that have the tag Chapter.

fmbook::*//*/fmchap::*//Body If the context is an active document:

Matches all Body elements in the parent
book.

If the context is an active book:

Matches all Body elements in the book.

Chapter 2 About FrameSLT XPath

32 FrameSLT 3.30

Flow-related queries
The following examples use the special axes for traversing between flows, as described under
“Special flow-related axes” on page 17.

fmcomp::*/ancestor::*//*/fmchap::*//
Body

If the context is an active document:

Matches all Body elements in the parent
book.

If the context is an active book:

Matches nothing. fmcomp is only relevant
when the context is a document.

fmfile::somefile.fm In all contexts:

Matches the HLE of a file with the name
somefile.fm. The remainder of the
absolute path is not relevant, unless you are
attempting to open the file, in which case the
file must be in the same folder as the current
context file.

fmfile::somefile.fm//Body In all contexts:

Matches all Body elements in the file
somefile.fm.

fmfile::somefile.fm/
fmfile::someotherfile.fm/Body

In all contexts:

Matches all Body elements in the file
someotherfile.fm, provided that an HLE
for somefile.fm was found first. The
expression effectively steps through multiple
documents in a single query.

fmfile::somefile.fm/fmbook::*//*/
fmchap::*//Body

In all contexts:

Matches all Body elements in the parent
book for the file somefile.fm.

Expression Behavior

Expression Behavior

flow-body::A Matches the first text frame of each flow A
on the body pages of the document.

flow-body::* Matches nothing, unless there is a flow on
the body pages named “*”. Wildcards are
not supported for flow-related axes.

flow-any::A Matches the first text frame of each flow A in
the document, regardless of page type.

flow-body::A/* Matches each HLE in each flow A on the
body pages of the document.

flow-body::A/Chapter Matches each HLE named Chapter in
each flow A on the body pages of the
document. For any flow whose HLE is not
named Chapter, no match is made.

Chapter 2 About FrameSLT XPath

FrameSLT 3.30 33

flow-body::A//Table Matches every Table element anywhere
within any flow A on the body pages of the
document.

flow-body::A//Table/flow-body::B/* Matches each HLE in each flow B on the
body pages of the document, provided that
there is at least one Table element
somewhere within any flow A.

Expression Behavior

Chapter 2 About FrameSLT XPath

34 FrameSLT 3.30

FrameSLT 3.30 35

Chapter 3 The Node Wizard and
Other Utilities

This section contains information on FrameSLT utilities including:

• “The Node Wizard” on page 35

• “Node Wizard scripts” on page 45

• “FrameSLT condition management” on page 69

The Node Wizard
The Node Wizard is an XPath-based search tool that you can use to perform highly-customized
queries on your structured documents, and if desired, perform structure manipulation such as
element wrapping and setting attributes. Because it is XPath-based, your ability to find specific
nodes is extremely versatile and limited only by the extent of the markup available for evaluations.

In some respects, the Node Wizard resembles a traditional “Find/Replace” tool, in which you
specify a search criteria and perhaps an optional action to take when the item is found. Unlike
FrameMaker’s native Find tool, however, the Node Wizard can use XPath to evaluate nearly any
markup quality of an element or attribute during its queries, and perform a host of useful actions
when it finds its targets.

Node Wizard searching
You can use the node wizard as a “search-and-act” tool, or simply as a search tool. In either case,
the internal search methodology and XPath handling is the same. For the most part, if you
understand XPath, searching with the Node Wizard is intuitive and requires little explanation.
However, the Node Wizard does have certain characteristics which you should understand before
using it, as explained in the following sections.

Match First, Match Next, and context nodes
An XPath query is a context-based process, during which you begin at a certain point, and each
successive query is dependent on the context of the previous query. Any given query has a
definitive starting and ending point, unlike a general search, which can be circular. Hence, the
Wizard requires both Match First and Match Next buttons. Match First starts (or restarts) the
search at the appropriate context node, and Match Next resumes the query from the context of
the previous query.

As such, an awareness of the original context node is important. If your XPath expression begins
with a go-to-root axis (“/”), the process is simple. The original context node is set at the structural
root and you do not need to be concerned with it. However, if your XPath does not begin with this
axis, your original context becomes the currently selected element node when you click Match
First. If no node is completely selected, the context node becomes the element that is the direct
parent of the insertion point. Therefore, if you are using XPath that does not begin with a slash,
you must remain conscious of where you have set the starting context.

As an example, consider the following structure tree, with a Section element selected:

FrameSLT 3.30 36

If you use the following XPath expression:
//Body

...your first query will find the first Body element in the tree, sibling to the Title element.
However, if you use the following XPath expression:

Body

...your query will find the first Body element under the selected Section element, because in
the absence of any other context, the Section element becomes the original context. After the
query, if you clicked Match First again, it would find nothing, because the newly-selected Body
element would be set as the original context and this element has no children at all.

For simplicity, you should use XPath that begins with the “go-to-root” axis whenever possible. If
you are performing document- or book-wide node actions with the Perform Actions On All
button, this axis is required.

Additionally, note the following:

• Structural changes, such as deleting and wrapping elements, can potentially destroy the
original contexts and cause subsequent Match Next actions to fail. For this reason, the Match
Next button may become disabled after performing one of these actions and require the query
to be restarted with Match First. Note that during a Perform Actions on All operation, all
possible XPath node matches are found and stored before any actions are performed,
preventing the need to mimic this behavior during automated actions. For more information
about FrameSLT behavior during Perform Actions On All, see “Query behavior during
“Perform Actions On All” operations” on page 44.

• In your FrameSLT preferences, you can specify whether or not the focus should automatically
return to the active document after clicking Match First or Match Next. For more information,
see “Preferences” on page 10.

Match All
The Match All button finds every match according to current Node Wizard settings and places
them in the match history, after which you can use the << and >> buttons to shuffle through them.
The button has the same effect as if you clicked Match First once, then clicked Match Next
repeatedly until all matches were exhausted.

You can set your preferences to optionally report on the number of matches each time you click
the button. For more information, see “Preferences” on page 10.

XPath favorites
In the XPath Favorites area, you can manage a simple list of frequently-used expressions or
frequently-used prefixes. For example, you may want to store the following in your favorites:

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 3.30 37

fmbook::*//*/fmchap::*

...which is the standard beginning of an expression for performing a book-wide query. Note that
you can also manage the list directly in the text file where it is stored. This file is named
FrameSLT_XPath_Favorites.txt and resides wherever your other settings are stored.

About the Node Wizard and document flows
The Node Wizard can be used to query any structured flow in a document. In addition, you can
have Node Wizard actions implemented in any structured flow. The consideration of which flow to
process depends on the current location of the insertion point and the status of the Process/query
all structured flows checkbox, as follows:

About the Node Wizard and file opening
Using the Allow Node Wizard to open files option, you can control whether the Node Wizard is
allowed to open closed files. It is only applicable to the use of special axes that allow queries to
traverse files and books (fmbook::, etc). The following table describes the various behaviors,

Process/query all
structured flows is
unchecked

• For document operations, all processing will occur within
the flow that contains the current insertion point. If there is
no insertion point, FrameSLT will assume the main flow.

• For book operations, FrameSLT will always assume the
main flow.

For example, if you are processing a document and you click
Match First, the query will begin in the flow that contains the
current insertion point. If you did not have any insertion point
established, the query will begin in the main flow, usually flow
“A.” The query will not expand to any other flow, unless you
reset the insertion point to another flow and click Match First
again.

Perform Actions On All exhibits similar behavior. If you have
an insertion point established in a flow, the action(s) will be
performed in that flow. If there is no insertion point, the action(s)
will be performed in the main flow. If you are processing a book,
the action(s) will be performed in the main flow of all documents
in the book.

Process/query all
structured flows is
checked

For a book or document operations, processing will occur in all
structured flows, starting from the first one FrameSLT finds in
the document(s). The current location of the insertion point is
ignored.

For example, if you are processing a document and you click
Match First, FrameSLT will start the query in the first structured
flow it finds. It will continue the query through all structured flows
in the document until it finds a match. If it gets through all
structured flows without making a match or exhausts all
matches, it will then report “Not found.” If you are searching a
whole book, the same process will occur for all documents in the
book, except that it will not report “Not found” until every
document in the book has been queried.

A similar behavior occurs for Perform Actions On All. If you
are processing a document, the action(s) will be performed on
all flows in the document. If you are processing a book, the
action(s) will be performed in all structured flows in all
documents in the book.

Chapter 3 The Node Wizard and Other Utilities

38 FrameSLT 3.30

according to axis. In all cases, if the option is not checked and the requested file is not open, the
query fails at that point. If the option is checked:

Changing documents/elements during a query
When you click Match First or Match Next, FrameSLT stores all applicable contexts in memory,
and resumes from those contexts the next time you click Match Next. Therefore, manually
changing the active document and/or the current element selection after a query will not affect the
query sequence if you click Match Next again, nor will it obstruct the functionality of the match
history features (see “Match history” on page 38). That is, the query will always resume from the
context of the previous match.

If you use special axes that allow queries to traverse files and books (fmbook::, etc.), the Node
Wizard will automatically manage the movement between files, as applicable. Because XPath can
move between files, the Node Wizard displays two different file labels below the XPath box:

• Currently active file - The file that was active during the last refresh of the Node Wizard. This
file may have been activated by a query or by a manual user action.

• Original query file - The file that was active the last time that you clicked Match First, Match
All, or Perform Actions(s) On All; that is, the original context of the query. This file does not
change with a Match Next action because the original context does not change.

For more information on axes that traverse files, see “Special book- and file-related axes” on
page 20.

Match history
The Node Wizard includes << and >> buttons that allow you to shuffle through the history of
element nodes matched by the XPath expression, from the use of the Match First, Match Next,
and Match All buttons. When you step through the history, you are stepping through the history of
XPath queries only. No XPath processing takes place when you use these buttons; however,
structural alterations that occurred since the history was stored may interfere with their ability to
find the original elements. When moving through the history, if the match number is preceded by
an exclamation point (!), the original element could not be found again.

Tip: The XPath match history is reset with each successful query initiated by the Match First
button.

Attribute nodes
In your XPath, you can specify a query for an attribute node. You should be aware, though, of how
attribute node matching behaves with regard to Node Wizard functions, as follows:

• Node selection, after a “match” action When you click Match First or Match Next,
FrameSLT selects an element in the document if a match is made. If the XPath matches an
element node, it will select that element. If it matches an attribute node, it will select the
element that contains the matched attribute. In the case of an attribute node, you will not know

Axis Behavior

fmfile The Node Wizard attempts to open the specified file. If it cannot be opened, the
query fails at that point.

fmbook The query fails at that point. The Node Wizard cannot attempt to open an
unknown book. Therefore, the option effectively has no effect on this axis.

fmcomp The query fails at that point. The Node Wizard cannot attempt to open an
unknown book. Therefore, the option effectively has no effect on this axis.

fmchap The query attempts to open the respective chapter file. If it cannot open the file,
the query fails at that point.

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 3.30 39

from the element selection alone which attribute was matched; you will only know the element
that contains the matched attribute.

• Element actions When the XPath matches an element node, the specified element action
occurs on the matched element. When the XPath matches an attribute node, the element
action occurs on the element that contains the matched attribute node.

• Attribute actions Attribute actions may occur on a matched attribute node, a specified
attribute node, or both, depending on the XPath setup and action type. This situation can
become complex and is explained in more detail under “Attribute actions” on page 41.

As an example, consider the following structure tree:

With this structure, the following two expressions would produce the same result when “Match
First” is clicked. That is, both would select the Title element:

/*/@ID

/*[@ID]

Performing node actions
As an option, you can perform a variety of element and attribute actions during your queries. The
following sections describe the behavior of these actions in more detail.

Element actions
Note: Unless specifically indicated in the respective description, you should assume that an

action works on element nodes only, not text frames matched with a special flow axis
(see “Special flow-related axes” on page 17).

• Retag as Retags matched element nodes with the selected tag name. That is, it changes the
element name.

• Wrap element in Wraps the matched element node and all its contents in a new element
with the selected tag name.

• Wrap contents in If the XPath matches an element node, wraps the entire contents of the
matched element node in a new element of the selected tag. The new element becomes the
first and only child of the original matched element.

-or-
If the XPath matches a text frame using a special flow axis, wraps the entire contents of the
respective flow in the specified element. This action works on both structured and
unstructured flows, which in the case of the latter, wraps all previously-unstructured content in
a new HLE.

• Unwrap Unwraps (and discards) the matched element node tag. The contents of the element
are preserved and placed on the structure tree where the original element resided.

• Move up Slides the matched element node up its branch one position, making it the previous
sibling of its formerly previous sibling. If the element is already at the top of its branch (that is,
the first child of its parent), this action has no effect.

Chapter 3 The Node Wizard and Other Utilities

40 FrameSLT 3.30

• Move down Slides the matched element node down its branch one position, making it the
following sibling of its formerly following sibling. If the element is already at the bottom of its
branch (that is, the last child of its parent), this action has no effect.

• Promote When an element is promoted, it becomes a sibling of its former parent. After
promotion, it appears immediately after its former parent. The siblings that follow it become its
children.

• Demote When demoted, an element becomes a child of the sibling element before it.

• Delete element Deletes the matched element node and all its children.

• Delete contents If the XPath matches an element node, deletes the entire contents of the
matched element node, leaving an empty element.

-or-
If the XPath matches a text frame using a special flow axis, deletes the entire contents of the
respective flow.

• Insert elem before Inserts a new, empty element of the specified tag directly before the
matched element node, as its immediate previous sibling.

• Insert elem after Inserts a new, empty element of the specified tag directly after the matched
element node, as its immediate following sibling.

• Insert first child Inserts a new, empty element of the specified tag as the first child of the
matched element node.

• Insert last child Inserts a new, empty element of the specified tag as the last child of the
matched element node.

• Assign conditions Assigns the specified conditions to the matched element node and its
children. When adding condition tags to assign, the drop-down list is populated based on
condition tags found in the currently-active document. However, you may specify any tag. If
the Node Wizard attempts to assign a tag that does not exist in the current document, the error
report will indicate as such. For important notes on conditional text, see “A word on conditional
text” on page 45.

• Paste CB over elem Pastes the current contents of the Windows clipboard over the matched
element node, replacing the element. Clipboard contents may include text, FrameMaker
objects, and structural elements. You must copy the desired contents onto the clipboard before
running this action.

• Paste CB over contents Pastes the current contents of the Windows clipboard over the
contents of the matched element node, replacing the original contents but preserving the
element tag. Clipboard contents may include text, FrameMaker objects, and structural
elements. You must copy the desired contents onto the clipboard before running this action.

• Paste CB at beginning Pastes the current contents of the Windows clipboard at the
beginning of the matched element node, as the first child. It does not replace any existing
content of the matched element. Clipboard contents may include text, FrameMaker objects,
and structural elements. You must copy the desired contents onto the clipboard before running
this action.

• Paste CB at end Pastes the current contents of the Windows clipboard at the end of the
matched element node, as the last child. It does not replace any existing content of the
matched element. Clipboard contents may include text, FrameMaker objects, and structural
elements. You must copy the desired contents onto the clipboard before running this action.

• Paste CB before Pastes the current contents of the Windows clipboard directly before the
matched element node, as its immediate previous sibling. It does not replace any existing
content of the matched element. Clipboard contents may include text, FrameMaker objects,
and structural elements. You must copy the desired contents onto the clipboard before running
this action.

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 3.30 41

• Paste CB after Pastes the current contents of the Windows clipboard directly after the
matched element node, as its immediate following sibling. It does not replace any existing
content of the matched element. Clipboard contents may include text, FrameMaker objects,
and structural elements. You must copy the desired contents onto the clipboard before running
this action.

Attribute actions
As implied by the name, attribute actions involve attribute nodes. The variety and flexibility of
FrameSLT attribute manipulation, however, can make it difficult to understand the more advanced
capabilities of the plugin. This section attempts to describe the fundamentals of attribute actions in
detail, giving you the basic knowledge to understand the bigger picture and possibilities for
attribute manipulation. Please read this entire section before using attribute actions in the Node
Wizard.

Every attribute action operates on one or more attribute nodes. The particular attributes on which
actions operate fall into two categories:

• Specified attributes In the Node Wizard, you can directly specify attribute names on which
you want the action to occur. With specified attributes, it is not necessary for the XPath
expression to match attributes, although it can if you desire. When actions are performed, for
each XPath match, FrameSLT will simply look for the specified attribute(s) on each matched
element, and generate a warning if the attribute is not found. If the XPath matches attribute
nodes, the same behavior will result, with FrameSLT searching the parent element for the
specified attribute.

In short, when an attribute action is performed on a specified attribute, any matched attribute
is generally not relevant, other than its contribution to the XPath query. The attribute is acted
upon based on the name specified in the Node Wizard.

• Matched attributes As an alternative to directly specifying attributes, attribute actions can
be performed on attributes matched by the XPath expression. Acting upon matched attributes
allows you to be much more precise about attribute manipulation, because the XPath
expression will control which attributes are acted upon. Furthermore, it allows you the flexibility
to use XPath wildcards to find attribute candidates for the specified action. To indicate that an
attribute action should be performed on matched, versus specified, attributes, you should put
the text {xpath-match} in the Attributes box or simply leave it empty.

Tip: The Node Wizard Tutorial explores this subject in more detail and provides hands-on
examples. If these explanations do not make sense, the tutorial may help you understand
them better.

Note the following important items regarding specified versus matched attributes:

• You may combine matched and specified attributes in a single action. For example, if both
“Product” and “{xpath-match}” are listed in the Attributes box, the specified action will occur on
both the Product and the matched attribute node for each match, as applicable.

• If you specify an attribute that is not found on the matched or nearest element node, an error
will occur, on an action-by-action basis.

• If you specify actions to occur on matched attributes, but your XPath does not match attribute
nodes, the attribute action will have no effect and will generally be considered an error.

Furthermore, certain attribute actions inherently apply to both matched and specified attributes,
and therefore require both a specified attribute and an XPath expression that matches attribute
nodes. The following list describes the available attribute actions in detail, noting specified versus
matched attribute issues where appropriate.

• Add specified values Adds the specified values to the specified attributes in addition to any
existing values. Specified attributes may include “{xpath-match},” which causes the specified
values to be set on any attribute matched by the XPath expression.

Chapter 3 The Node Wizard and Other Utilities

42 FrameSLT 3.30

• Remove specified values Removes the specified values from the specified attributes, if
they currently exists. values. Specified attributes may include “{xpath-match},” which causes
the values to be removed from any attribute matched by the XPath expression.

• Replace values with spec Replaces any current values of the specified attributes with those
specified in the dialog. All current values of these attributes are removed first. Specified
attributes may include “{xpath-match},” which causes the specified values to be replaced on
any attribute matched by the XPath expression.

• Delete all values Clears all current values from the specified attributes, leaving empty
attributes. Specified attributes may include “{xpath-match},” which causes the deletion of
current values from all attributes matched by the XPath expression.

• Move value to elem text For all specified attributes, moves the current attribute value to the
parent element text, replacing any element text that previously existed. The element/attribute
pair on which this occurs is based on matches by the XPath. For best results, only a single
attribute should be specified, and it may be specified as “{xpath-match},” causing text
movement from the attributes matched by the XPath expression. As a “move” operation, the
value is physically moved and the attribute is left empty. This action operates on the first
attribute value only and is limited to 255 characters.

• Copy value to elem text For all specified attributes, copies the current attribute value to the
parent element text, replacing any element text that previously existed. The element/attribute
pair on which this occurs is based on matches by the XPath. For best results, only a single
attribute should be specified, and it may be specified as “{xpath-match},” causing a text copy
from the attributes matched by the XPath expression. As a “copy” operation, the value is
copied only and the original attribute is unaffected. This action operates on the first attribute
value only and is limited to 255 characters.

• Move elem text to value For the specified attributes, moves the parent element text to the
first attribute value, replacing any attribute values that previously existed. Multiple attributes
may be specified, although a single attribute specification is generally recommended for
management purposes. The element/attribute pair on which this occurs is based on matches
by the XPath. The specified attribute may be specified as “{xpath-match},” causing text
movement to the attributes matched by the XPath expression. As a “move” operation, the
value is physically moved and the element is left empty. This action operates on the first
attribute value only and is limited to 255 characters.

• Copy elem text to value For the specified attributes, copies the parent element text to the
first attribute value, replacing any attribute values that previously existed. Multiple attributes
may be specified, although a single attribute specification is generally recommended for
management purposes. The element/attribute pair on which this occurs is based on matches
by the XPath. The specified attribute may be specified as “{xpath-match},” causing a text copy
to the attributes matched by the XPath expression. As a “copy” operation, the value is copied
from the element only and the element is left as it was found. This action operates on the first
attribute value only and is limited to 255 characters.

• Move values to spec attr For each XPath match, moves the values found on the matched
attribute to the specified attribute. This action, therefore, requires that the XPath expression to
match attribute nodes, not element nodes. Furthermore, the specified attribute should NOT be
“{xpath-match}”, because the other end of the transaction is already the matched attribute.
Only a single attribute should be specified, and any additional attributes will be ignored. As a
“move” operation, the value(s) are moved and the matched attribute is left empty. If the
matched attribute was empty originally, both attributes will be empty at the end of the
operation.

• Copy values to spec attr For each XPath match, copies the values found on the matched
attribute to the specified attribute. This action, therefore, requires that the XPath expression to
match attribute nodes, not element nodes. Furthermore, the specified attribute should NOT be
“{xpath-match}”, because the other end of the transaction is already the matched attribute.

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 3.30 43

Only a single attribute should be specified, and any additional attributes will be ignored. As a
“copy” operation, the value(s) are copied only and the matched attribute is left as found. If the
matched attribute was empty originally, both attributes will be empty at the end of the
operation.

• Move values from spec attr For each XPath match, moves the values found on the
specified attribute to the matched attribute. This action, therefore, requires that the XPath
expression to match attribute nodes, not element nodes. Furthermore, the specified attribute
should NOT be “{xpath-match}”, because the other end of the transaction is already the
matched attribute. Only a single attribute should be specified, and any additional attributes will
be ignored. As a “move” operation, the value(s) are moved and the specified attribute is left
empty. If the specified attribute was empty originally, both attributes will be empty at the end of
the operation.

• Copy values from spec attr For each XPath match, copies the values found on the
specified attribute to the matched attribute. This action, therefore, requires that the XPath
expression to match attribute nodes, not element nodes. Furthermore, the specified attribute
should NOT be “{xpath-match}”, because the other end of the transaction is already the
matched attribute. Only a single attribute should be specified, and any additional attributes will
be ignored. As a “copy” operation, the value(s) are copied only and the specified attribute is
left as found. If the specified attribute was empty originally, both attributes will be empty at the
end of the operation.

• Swap values with spec attr For each XPath match, swaps the values found on the matched
attribute with those found on the specified attribute. That is, the two original value sets are
exchanged between the two attributes. This action, therefore, requires that the XPath
expression to match attribute nodes, not element nodes. Furthermore, the specified attribute
should NOT be “{xpath-match}”, because the other end of the transaction is already the
matched attribute. Only a single attribute should be specified, and any additional attributes will
be ignored.

• Search and replace string For each XPath attribute match, performs a string search and
replace on existing values, using the specified strings. The search string may represent a
whole value or a string fragment within values, and the replace string may be zero or more
characters, with an empty replace string simply deleting any instance of the search string. The
search string is case-sensitive, and wildcards are currently not supported. The operation is
performed on attributes matched by the XPath expression only, and is performed on all
existing values of the respective attribute.

• Remove invalid attribute For each XPath match, removes the specified attribute(s) from the
element if found to be invalid; that is, not defined by the EDD. Removal includes removal of
the attribute and all values on the matched element only. Specified attributes may include
“{xpath-match}”, which will cause the removal of the attributes matched by the XPath
expression. If any specified or matched attribute is found to be valid, the action has no effect
and will produce a warning as applicable.

IMPORTANT NOTE

The following actions move text from an element to an attribute, or vice-versa:

• Move value to elem text

• Copy value to elem text

• Move elem text to value

• Copy elem text to value

If the original text string to be moved or copied is empty, the action will only proceed if you have
your FrameSLT preferences set accordingly. If you choose to allow the moving or copying empty
strings, the result will be the deletion of all text at the target. For example, if the action “Copy value
to elem text” is performed on an attribute with no values, the result will be the deletion of all current

Chapter 3 The Node Wizard and Other Utilities

44 FrameSLT 3.30

contents of the element, if any. For more information on setting this preference, see “Preferences”
on page 10.

Important warning about node actions
Node actions, especially when performed as a batch with the Perform All Actions button, can
cause major changes to your structure and content. Do not use this function unless:

• You are 100% sure that you understand what your XPath and the specified actions are going
to do

and/or

• Your files are securely backed up

Backups are recommended in any case. Remember that you can also close and reopen your files
afterwards WITHOUT SAVING CHANGES to restore your files.

If you remember nothing else, remember this: A SINGLE CLICK OF THE “PERFORM ACTIONS
ON ALL” BUTTON COULD DELETE EVERY SINGLE CHARACTER OF CONTENT OUT OF AN
ENTIRE BOOK WITHIN SECONDS, IF YOUR PARAMETERS ARE NOT SET UP PROPERLY.
Use the Node Wizard at your own risk and DO NOT SAVE CHANGES unless you are positive that
they are what you intended!

“Perform Action(s) and Find Next” button
This button has the effect of clicking Perform Action(s) then Match Next. Note that some actions,
such as element deletion, unwrapping, and promotion/demotion, alter the structure tree
significantly enough that the original XPath context is destroyed and the query cannot continue
with this button.

Query behavior during “Perform Actions On All” operations
When you click Perform Actions On All the Node Wizard will query the active document for all
possible nodes that match the specified XPath expression and store them in memory. After the
node list is complete, it then steps through the list performing the specified action(s) on each node.
This methodology is followed even if the expression matches nodes in multiple files.

For this reason, element actions such as deletion, unwrapping, promotion, and demotion can be
reliably performed during Perform Actions On All operations, with proper setup. This behavior
differs somewhat from using the Match Next and Perform Action(s) button, because the Match
First and Match Next buttons do not store all possible matches from the outset. Rather, they go
one match at a time, each time considering the current context as it exists in the document.
Therefore, certain element actions may disable the Match Next button when querying a node at a
time.

Element actions that preclude attribute actions
The following element actions cannot be combined with an attribute action:

• Unwrap—After unwrapping an element, no attributes are available for an action.

• Delete element—After deleting an element, no attributes are available for an action.

• Paste clipboard contents over element—This action replaces the original element and creates
too much uncertainty to safely attempt attribute actions.

Wrapping elements and performing an attribute action
If you combine a “wrap” element action and an attribute action, the attribute action is performed on
the element that was originally matched by the XPath expression, not the new, “wrapping”
element. For example, if your expression is set to match Body elements, and the element action is
set to wrap them in Section elements, any attribute actions will be performed on the original
Body elements, not any new Section elements.

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 3.30 45

A word on conditional text
If you have hidden conditional text in your document, it will not be affected by any Node Wizard
function. In essence, it is invisible to FrameSLT. If you use conditional text, be sure to manage it
carefully when conducting Node Wizard activity.

You can remove all assigned condition tags from your visible text by using the following XPath
expression:

//*

...combined with the “Assign conditions” element action, but with no condition tags specified.

XPath parsing
The Node Wizard includes an option to parse your XPath only and forgo any searching. This
function is a convenience to help you check for syntax errors in your XPath. With this option, you
can also print the parsed XPath components to the console for rudimentary debugging purposes.
This console report can help you see how FrameSLT recognized the components of your XPath
and may help you correct errors. For example, if you forget to put the parentheses on a “position()”
function, the console report will indicate that the component was recognized as a test for a node
named “position,” rather than a logical test involving a node’s position.

FrameSLT parses XPath into a tree-like structure which it navigates through while searching your
documents. The console report, therefore, attempts to outline this parsed XPath tree. Please note
that the XPath processing is somewhat complex and this console report is not intended to be a
comprehensive debugging tool. It is used during the development and testing of FrameSLT and
has been simply left there in the event that you might find some use for it as well. With some
experience, you should at least be able to see how axes, functions, node tests, and predicates are
recognized. For complex expressions and query issues, though, you may need to run experiments
until your queries behave as expected.

Node Wizard scripts
Node Wizard scripts allow you to automate sequences of element and/or attribute actions
throughout an entire document or book, without the need to configure the Node Wizard dialog
each time. A script can perform any action supported by the Node Wizard and more, in any
sequence and with any frequency. You may have any number of scripts defined, with any number
of events.

With the capacity to nest events with cascading XPath context, you can perform very complex
document alterations, including the ability to retrieve content from any attribute or element in any
file and move it to any other attribute or element. For more information on nesting events, see
“About subevents” on page 46.

Node Wizard scripts are launched using the scripts dialog at FrameSLT > Node Wizard Scripts.
Scripts may also be initiated by FrameScript, FrameAC, or any other API client through the
FrameSLT external call interface. For more information, see “RunNWScript” on page 135.

Scripts can also be set to automatically run after key events such as document opening and EDD
imports. For more information on autorunning Node Wizard scripts, see “Autorun triggers” on
page 53.

Tip: FrameSLT includes a tutorial on Node Wizard scripting. It may be a good place to start for
understanding how it works.

Note: LIKE NODE WIZARD ACTIONS, A SINGLE SCRIPT EVENT COULD DELETE EVERY
SINGLE CHARACTER OF CONTENT OUT OF AN ENTIRE BOOK WITHIN
SECONDS. USE THIS SCRIPTING AT YOUR OWN RISK. KEEP BACKUPS AND DO
NOT SAVE ANY FILES UNTIL YOU ARE SURE THAT A SCRIPT IS DOING WHAT
YOU INTEND IT TO. A SINGLE MISTAKEN CHARACTER IN A SCRIPT COULD
CAUSE IT TO DO SOMETHING COMPLETELY UNEXPECTED AND POTENTIALLY

Chapter 3 The Node Wizard and Other Utilities

46 FrameSLT 3.30

CATASTROPHIC, ESPECIALLY IF YOU SAVE THE RESULTS WITHOUT VERIFYING
THEM.

About Node Wizard scripts
A script is a series of one or more XPath-driven events that run in sequence. Each event is much
like a single snapshot of the Node Wizard, comprised of an XPath expression and any desired
element/attribute actions. When a script runs, each event runs independently and behaves exactly
as if you had manually configured the Node Wizard with the respective settings and clicked
Perform Actions On All. When a script is complete, FrameSLT produces the same status report
that you see after a Node Wizard “Perform Actions On All.”

Because events are like snapshots of the Node Wizard, a familiarity with the Node Wizard should
be all you need to successfully write and run scripts. For more information on writing and editing
scripts, see “Writing and editing scripts - General information” on page 50. For more details on the
behavior of element and attribute actions themselves, see “Element actions” on page 39 and
“Attribute actions” on page 41.

About subevents
In a Node Wizard script, you can nest events using the SubEvent element at the end of any
NWScriptEvent or SubEvent element branch. A subevent is run for each match of the parent
event or subevent XPath, with the XPath query launched from the context of that match. There is
no limit to the depth of subevent nesting.

To use subevents successfully, it is important to understand the concept of cascading XPath
context and the looping aspects of a parent event. As an example, assume that you have a parent
event with the following XPath:

//Section/@MyAttribute

...and a subevent with the following XPath:
Body

Each time the parent event XPath matches a MyAttribute attribute, it will perform its respective
actions on that match and then launch the subevent, whose XPath query will start from the
element context of that match. In summary, therefore, note the following:

• A subevent is launched once for each match of the parent event XPath, with a new subevent
XPath query performed each time.

Note: If a subevent deletes an element in the list of parent event matches, the script will
not launch any subevents for that iteration. This behavior is necessary because the
context of a non-existent node can cause unpredictable behavior within a subevent.
Therefore, you should be very careful that a subevent doesn’t delete or unwrap any
element in the list of parent event matches.

• The XPath query of a subevent starts from the context of the parent event match. For this
reason, subevent expressions do not require the “go-to-root” axis (/) like top-level events. You
can use this axis for subevent expressions, however, understanding that the context passed to
the subevent will then be overridden and therefore irrelevant.

• A parent event will perform its own element/attribute action(s), if any, before passing the
context to the subevent and launching it.

• If a parent event makes no matches, a subevent will never run.

• Only the element node context is passed to a subevent, even in the case of an attribute match.
This is important to allow further contextual queries within subevents when a parent event
matches attributes. Technically, the context of an attribute is a dead-end from which no further
navigation is possible, so a rigid adherence to this context would limit the ability to move away
from an attribute context and perform actions elsewhere. If you need to work on a matched
attribute again within a subevent, set up your XPath expression to match it again.

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 3.30 47

• The context of any given event is passed to subevents only. It is never passed to sibling
events.

• Any event can have zero, one, or more subevents, which must be located at the end of its
element branch.

Subevent nesting in conjunction with clipboard features provide a very powerful and unique
transformation engine for structured FrameMaker documents. You can copy content from any
element or attribute in a parent event and paste it anywhere else with subevents. Use it with
caution.

About document versus whole-book processing
All scripts begin operation on the currently-active file, whether it is a document or a book. At any
time, any event can shift processing to a different file, using the special axes described under
“Special book- and file-related axes” on page 20.

When a script is run on a book, you have two different methods to direct initial processing:

• Strict XPath-based navigation (default) - This method requires explicit XPath syntax to
control the navigation among chapter files. That is, the script does not automatically iterate
through all chapter files; rather, it goes directly to any location specified by XPath expressions.
The initial starting context for any top-level expression is the book structure tree HLE.

As an example, assume that you would like to match all Body elements in all chapters in a
book, perhaps to retag as something else. You could use an event XPath expression such as:
fmbook::*//*/fmchap::*//Body
With this type of expression, you can run the script on the book file and the query will traverse
the entire book. Note that by nature of the initial navigation to the book HLE, this example
would operate identically if run on a chapter file instead.

• “Classic” iterative chapter navigation - This method iterates through all chapters in the
book and runs the script independently on each chapter. The initial starting context with each
chapter is the HLE of the respective chapter tree. The book structure tree is ignored, unless an
XPath expression explicitly directs the navigation from the document tree to the book tree.

To enable this mode, you must insert a <BookNavigationMode> element under the script
<GeneralSettings>, then a <Classic> element under that.

Note: In classic mode, all book-based XPath syntax is fully supported, so you can still
navigate through the book structure tree and into other documents if desired.

Note: Extended XPath axes and related functionality offer an extensive amount of flexibility
with XPath queries, but at the cost of increased complexity. An expression can now find
nearly anything in nearly any file, but only if you know how to write it. Please contact
West Street for assistance if necessary. We are happy to help you get the most out of
this software.

Element/attribute actions supported by scripts only
This section describes element and attribute actions that are supported by scripts but not by the
Node Wizard dialog box. Certain actions are not useful without the ability to nest events and
provide multiple XPath expressions. For descriptions of all other actions that are supported by the
dialog box, see “Element actions” on page 39 and “Attribute actions” on page 41.

Element actions:

• Copy_elem_to_CB - Copies the entire matched element to the clipboard, including all
contents and descendant elements.

• Copy_elem_contents_to_CB - Copies the contents of the matched element to the
clipboard, including all descendant elements, but does not copy the element itself.

Note: “Copy” actions are typically used in conjunction with a subevent that pastes the
content somewhere else.

Chapter 3 The Node Wizard and Other Utilities

48 FrameSLT 3.30

• Copy_elem_text_to_parameter - Copies the text content of the matched element to the
specified parameter, up to the first 2056 characters.

• Set_elem_text - Sets the text content of the element according to the source specified by
subelements, overwriting any existing content.

Attribute actions:

• Copy_all_values_to_CB - Copies all values of the matched attribute to the clipboard. The
XPath must match an attribute for this action to work. If values are copied and later pasted to
another attribute, they will look exactly as they did at the original attribute. If multiple values
are copied and later pasted as element text, they will be pasted as a space-delimited
(tokenized) list.

• Copy_first_value_to_CB - Copies the first value of the matched attribute to the clipboard.
The XPath must match an attribute for this action to work. This action considers whitespace as
an attribute value delimiter, in support of tokenized lists.

• Detokenize_values - Separates any whitespace-delimited attribute values into individual
strings. Note that individual string values are generally applicable within the FrameMaker
environment only and do not translate well to XML.

• Paste_CB_to_matched_attr - Pastes the current contents of the clipboard to the contents
of the matched attribute. The XPath must match an attribute for this action to work. If the
clipboard currently contains text and/or element content, any text will be truncated to 254
characters as applicable and pasted as the first and only attribute value.

• Paste_CB_at_beg_of_matched_attr - Prepends the current contents of the clipboard to
the contents of the first value of the matched attribute. The XPath must match an attribute for
this action to work. This action includes the following contingencies:

- If the attribute currently contains no values, the action behaves like the
Paste_CB_to_matched_attr action.

- If the attribute contains multiple values, the action only acts upon the first value.
- If the clipboard contains multiple attribute values, the action only prepends the first value.

• Paste_CB_at_end_of_matched_attr - Behaves identically to
Paste_CB_at_beg_of_matched_attr, except that the value is appended, not prepended.

• Set_attr_value - Sets the value of the attribute according to the source specified by
subelements, overwriting any existing values. This action is somewhat of an extension of
Replace_values_with_spec; however, note that it can set a single value only.

• Sort_values - Allows alphabetical and numeric sorting of values, either ascending or
descending. Values are sorted and then set.

• Tokenize_values - Converts all values represented as individual strings into a single
whitespace-delimited string. This action is useful to convert the FrameMaker convention of
individual strings for individual values into a format more compatible with XML.

About the script settings file
The key component of the scripting feature is the “script settings” file, where all scripts are stored
and subsequently referenced. This file is named:

FrameSLT_Node_Wizard_Scripts.fm

...and resides in the folder where your FrameSLT settings and support files are located, either your
“user profile” area or the FrameSLT installation folder. This file is a structured document that
contains all the definitions and parameters of your currently active and inactive scripts.

Note the following about this file:

• This file is the only interface for editing scripts. FrameSLT currently has no graphical support
for script editing. For more information on working in this file, see “Writing and editing scripts -
General information” on page 50.

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 3.30 49

• This file must remain in the settings area with its original name, otherwise FrameSLT will not
be able to find it. In the future, we may enhance FrameSLT such that the location of this file is
customizable, but this effort will only be undertaken based on user demand. If you have a
need for this enhancement and/or more flexibility with script file location, please contact West
Street.

• You should not alter the structure rules of this file, because FrameSLT is expecting to find
certain elements in certain places. If you have a need to alter the EDD for formatting purposes,
please contact West Street first, because we can advise you of what will and will not break the
scripting process.

Running Node Wizard scripts within FrameMaker
All scripts and events are run through the scripts dialog, accessible by selecting FrameSLT >
Node Wizard Scripts. This dialog contains the following features and controls:

Script control Description

Active scripts box Lists all currently-active scripts in the scripts settings document.
For more information on active vs. inactive scripts, see
“Script-level general settings” on page 51.

Script events box Lists all events for the selected script. If the event has a name,
the name will be listed. For more information on event names,
see “Event name and description” on page 54.

Script description and
Event description

Displays descriptions for the selected script and event, as
applicable. If a script or event has no description, the respective
box will be grayed out. For more information on script and event
descriptions, see “Script name and description” on page 50 and
“Event name and description” on page 54.

Run Script Runs the selected script on the currently-active document or
book.

Tip: If you have the script settings file open for editing, be
careful not to accidentally run the script on the settings
file itself.

Check Script Runs basic error checking on the selected script, identical to the
error checking that occurs when you run a script. This button
does not run the script.

Edit Script For the selected script, jumps to the associated element in the
script settings file. If the scripts settings file is closed, you will be
prompted to open it.

Run Event Runs the selected event, independently of any other events.
With respect to the parameters in the script settings file, this
button is similar to the Perform Actions On All button on the
Node Wizard.

Tip: If you have the script settings file open for editing, be
careful not to accidentally run the event on the settings
file itself.

Chapter 3 The Node Wizard and Other Utilities

50 FrameSLT 3.30

Note: During each script/event run, FrameSLT must walk through the script settings file to get
the parameters. If the file is currently open, these activities will cause the file to think that
it has unsaved changes, even if you have not made changes yourself. Therefore, you
may be prompted to save changes when you close the file, even if you didn’t make any.

Writing and editing scripts - General information
All script writing and editing occurs in the script settings file. For more information on file naming
and its location, see “About the script settings file” on page 48.

The script settings file is a structured FrameMaker document and must be edited within
FrameMaker. It uses structural markup to define scripts, similar to how an EDD uses its own
element names to provide structure rule data. For these reasons, you do not need to learn any
kind of scripting language. For the most part, you need only to open the document and follow the
guidance of the element catalog.

The scripts document must have a highest-level element of WS_Scripts, with a child
NodeWizardScripts and each script wrapped in a NodeWizardScript element. No other
elements should appear at these levels.

The remaining information in this document describe the technical details of scripts that may not
be apparent from the markup alone. You may also find it valuable to study the tutorial and sample
scripts that installed with FrameSLT.

Note: The scripts file EDD is intended to guide you through the script writing process and
prevent errors. If your settings file is valid against its EDD, you are at least guaranteed
that all required elements are in place and that none are functionally missing. For this
reason, FrameSLT performs a limited validity check before running a script.

About parameters
Similar to the corresponding XSLT concept, Node Wizard Scripts support the use of parameters,
which are effectively variables that you can manipulate and retrieve at will. Note the following
general information about parameters:

• The general limit on parameter name length is 255 characters. The general limit on value
length is 2056 characters. There is no limit on the number of parameters you may define.

• Parameter usage is supported within XPath expressions (see “Using parameters in XPath
expressions” on page 55).

• Where appropriate, FrameSLT will automatically attempt to interpret parameter values as
integers; for example, within mathematical expressions and as arguments within XPath
position() function node tests.

• With the exception of parameters set with external calls (see SetScriptParm on page 140),
all previous parameter data is cleared each time a script is launched.

Script name and description
The first child of a script element must be a NWScriptName element, whose text contents
represent the name of the script. All scripts must have a unique name. Following the name, an
optional description may be wrapped in a NWScriptDescription element. If no description

Check Event Runs basic error checking on the selected event. This button
does not run the event.

Edit Event For the selected event, jumps to the associated element in the
script settings file. If the scripts settings file is closed, you will be
prompted to open it.

Script control Description

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 3.30 51

element is provided, the “description” box in the scripts dialog will be grayed out when the script is
selected in the scripts dialog.

Script-level general settings
A NodeWizardScript element must contain a NWGeneralSettings element, which may
include the following subelements:

Note: For “yes/no” Boolean options, the default is always “no.”

Element name
Required/
optional Description

ScriptIsActive Required Indicates whether the script is active or not
by the presence of a Yes or No
subelement. Inactive scripts do not appear
in the scripts dialog and cannot be run. The
active/inactive mechanism is intended to
allow the storage of draft/unused script
data in the scripts setting file.

Note: The Yes element must be
present to activate the script.
Otherwise, the script will be
assumed inactive.

ReportElemActionErrors
ReportAttrActionErrors
ReportOtherActionErrors

Optional Indicates whether to report errors and
warnings associated with element,
attribute, and “other” actions, respectively.
For element and attribute actions, these
options are functionally identical to the
“Report errors” checkboxes in Node
Wizard. “Other” actions are not supported
by the Node Wizard, so no comparable
option exists. For each of these options,
there must be a Yes subelement to enable
the option.

AllowScriptToOpenFiles Optional Indicates whether the script is permitted to
open files that are indicated with special
axes such as fmfile:: and fmcomp::.
This option is functionally identical to the
corresponding Node Wizard option (see
“About the Node Wizard and file opening”
on page 37).

By default, no file opening is permitted. If
an XPath expression points to a closed file,
the query will fail at that point.

Chapter 3 The Node Wizard and Other Utilities

52 FrameSLT 3.30

AssumeTokenizedAttrVals Optional Indicates whether the script should assume
that multiple values for attributes are
specified as whitespace-delimited strings,
in the same convention as XML. If set to
Yes, the script will recognize individual
values within a tokenized string for the
following actions:

• Add_specified_values

• Remove_specified_values

• Sort_values

Otherwise, the setting generally has no
effect on other attribute actions. Note the
following:

• This setting should match the
convention you use to specify
attribute values. If it does not, certain
actions may convert the convention
automatically. For example, if you have
the setting enabled and you run an
“add values” operation, it will
automatically tokenize any values that
it sets.

• The default is No; that is, do not
recognize whitespace as a value
delimiter.

If you want to convert from string values to
tokenized values or vice-versa, use the
Tokenize_values or
Detokenize_values attribute action,
respectively.

EnableParamtersInXPath Optional Indicates whether the script is permitted to
resolve parameters in XPath expressions.
If it is not, parameters will be handled
literally as written. This setting is required
for parameter usage.

For example, if parameters are enabled
and the parameter “parm1” equals “Body”,
the following expression:

//$parm1

...will resolve as:

//Body

Otherwise, the query will look for elements
with the actual tag “$parm1”.

For more information on parameters, see
“Using parameters in XPath expressions”
on page 55.

Element name
Required/
optional Description

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 3.30 53

Autorun triggers
The script element may contain an optional AutorunTriggers element, which specifies when
the script should automatically run. The default for each trigger is always “no,” and the absence of
an AutorunTriggers element will disable all autorunning for the script.

Note: Script autorunning must be globally enabled in your FrameSLT preferences before any
script will autorun. For more information, see “Preferences” on page 10.

Each subelement, such as OnDocumentOpen and/or OnEDDImport indicates a specific event
that should trigger the script to run. There must be a Yes subelement to activate autorunning for
the respective event. Alternatively, you may insert an IfXPathMatch element to control
autorunning based on an XPath match. The text of IfXPathMatch should represent a valid
XPath expression, and if the expression makes a single match on the respective document, the
script will run at the respective trigger.

As an example, assume you have a script that you want to run when documents are opened, but
only on documents that have a highest-level element of Chapter. Your script settings might
appear as follows:

The following table describes the individual events for autorunning in more detail.

Note the following important items about autorunning Node Wizard scripts:

• You should be very cautious when setting up scripts to autorun. It is easy to forget about them
and you may find yourself wondering why strange things keep happening to your files, when it
is actually a Node Wizard script running. Wherever possible, take advantage of the
IfXPathMatch filter to restrict script autorunning to the desired files.

• Autorun scripts do not produce any warnings or error reporting, other than the element/action
error report if the script specifies as such. If a script encounters an error that prevents it from
proceeding, it will simply abort.

• Autorun settings apply to documents only. Scripts will not autorun on a book.

• If an event occurs that triggers both an autorun script and conditional text assignment with the
conditional text management features, the conditional text assignment will occur first. For

Element name Event description

OnDisplayRefresh After the screen is refreshed using the Ctrl+L shortcut.

OnDocumentOpen After a binary FM document is opened. The results of the
script will not be saved.

OnEDDImport Following the import of element definitions through the menu
path File > Import > Element Definitions.

OnMarkupOpen After an XML, SGML, or MIF file is opened. The results of the
script will not be saved.

Chapter 3 The Node Wizard and Other Utilities

54 FrameSLT 3.30

more information on conditional text management features, see “FrameSLT condition
management” on page 69.

• As with all Node Wizard script activities, no changes are saved afterwards. You can undo the
effects of any script by closing the document without saving changes.

Event-level details
Script event settings define the actual work performed by the script when it is run. A script contains
one or more events, each of which is wrapped in its own NWScriptEvent element. During a
script run, FrameSLT steps through NWScriptEvent elements in order, performing actions as
instructed by the event settings. If an event contains subevents, these events are also run as
applicable before proceeding to the next event. The following sections describe the settings
associated with a single event.

Disabling events and actions
In a script, all event and action container elements have a Disable attribute, which if set to “Yes”,
effectively “comments out” any subelements. All subordinate content, instructions, etc. should be
completely ignored when running the script.

Event name and description
The event name (EventName) and description (EventDescription) are optional. If no name is
provided, the event shows as “{no name}” in the scripts dialog. If no description is provided, the
description box will be grayed out when the event is selected. Although you can specify this
information for subevents as well, the scripts dialog box shows this information for top-level events
only.

XPath expression
All events must have a valid XPath expression, represented as the text of an XPathExpression
element. Expressions can start with a forward slash (/) to begin the query at the structural root or
they can be contextual, depending upon the current context. In the case of top-level events, the
current context is the current element/text selection in the active file. With this context-related
support, you can run a script on a selected branch of a tree only. In all cases, you should always
remain familiar of how your scripts are constructed and whether the current selection will have any
effect on any given script.

Important note about context
If an XPath expression in a top-level event does not force the query to the highest-level element
with a forward slash (/), the expression will depend upon the context of the current element
selection. Therefore, when using scripts with these types of expressions, you should always be
careful to set the initial context properly.

Limiting the number of matches

The XPathExpression element provides two attributes which you may use to control the extent
of matching:

• MaximumMatches - Specifies the maximum number of nodes that you want the XPath to match,
in document order. Zero or no value indicates to match all possible nodes.

• SkipFirstMatches - Specifies the number of matched nodes you want to skip before applying
any actions and/or subevents. For example, if you specify 3 and the XPath matches 10 nodes,
the actions and/or subevents will only be applied to nodes 4-10. Nodes 1-3 will be completely
ignored. Zero or no value indicates normal behavior on all matched nodes.

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 3.30 55

If the two settings are used together, the count of maximum matches begins after the skipped
matches. For example, if you only want to apply actions and/or subevents to the fifth matched
node in document order, you would specify the following:

• MaximumMatches = 1

• SkipFirstMatches = 4

Sorting matches
As an option, you can place a SortOptions element directly following the XPathExpression
element to sort the matches based on the content of the matched node. Sorting happens
immediately following the XPath query and the new sort order remains permanent for the life of the
event.

You can choose to sort:

• In ascending or descending order.

• Using numeric, alphabetic, or case-insensitive alphabetic order. Numeric sorting should be
used if the content for all matched nodes represents real numbers, because alphabetic sorting
of numbers can produce a numerically-incorrect order. For example, the following list would be
considered correct for alphabetic order, but not numeric:

- 1
- 10
- 2
- 3

If unspecified, the sort defaults to alphabetic.

• Based on another XPath query from the context of each match. That is, you can specify an
additional XPath expression that is run against the context of each match to find another node
from which to retrieve sortable content, rather than using the original matched node. If
unspecified, the default is “.”, or in other words, sort based on the context of the original
match.

Using parameters in XPath expressions

For XPath expressions in Node Wizard Scripts only, the use of parameters is supported. Before a
parameter can be used, it must be properly set using the appropriate event action or an external
call (see ““Other” actions” on page 64 and SetScriptParm on page 140).

A parameter is effectively a variable. It must have some name and must be preceded by a dollar
sign ($) when referenced, similar to W3C standards for parameters in XPath/XSLT.

In an XPath expression, a parameter can replace either a node name or a literal string. If the
parameter follows an axis or is the argument of a not() function, it is assumed to be a node
name. Otherwise, it is assumed to be a literal string. As a general guideline, if you want a
parameter to be considered as a node name, always use an axis, even if you normally would not
specify it explicitly. For example, if you intend to invoke the child:: axis with a parameter, spell
out the axis, for example, child::$parm.

Chapter 3 The Node Wizard and Other Utilities

56 FrameSLT 3.30

The following tables shows some examples, using a theoretical parameter “parm” that has been
set to “Body”:

Sample expression //$parm

Functional equivalent //Body

Match behavior Matches all Body elements in the tree.

Sample expression //Section/$parm

Functional equivalent //Section/Body

Match behavior Matches all Body elements that are the children of Section
elements.

Sample expression //Section[$parm]

Functional equivalent //Section["Body"]

Match behavior Matches all Section elements in the file, because the parameter
is regarded as simple literal string, which when presented alone,
always returns a “true” condition.

Sample expression //Section[child::$parm]

Functional equivalent //Section[Body]

Match behavior Matches all Section elements in the file that have a Body child.
Note the use of the explicit axis to force consideration as a node
name.

Sample expression //*=$parm
-or-

//*[.=$parm]

Functional equivalent //*="Body"

Match behavior Matches all elements in the tree whose text content equals
“Body”.

Sample expression //$parm[.=$parm]

Functional equivalent //Body[.="Body"]

Match behavior Matches all Body elements in the tree whose text content equals
“Body”.

Sample expression //*[contains(.,$parm)]

Functional equivalent //*[contains(.,"Body")]

Match behavior Matches all elements whose text contains the string “Body”.

Sample expression //*[contains($parm, "Body")]

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 3.30 57

Flows to process
An event may include a FlowsToProcess element, which indicates which flow(s) the event
should process, either the main flow only or all structured flows in the document. In the absence of
this element, the default behavior is to process the main flow only, unless an expression
specifically designates a different flow (see “Special flow-related axes” on page 17). If the XPath
expression is a contextual expression in a subevent, this setting is not relevant because all queries
will automatically begin from the context passed down from the parent event.

Element actions
For each event, you can have zero or more ElementAction elements with the appropriate
subelements to define element-based actions to occur for each match of the XPath expression.
The action subelements follow the same naming convention as the Node Wizard action drop-down
list and perform the same activities. When multiple actions are specified, they are attempted in the
order shown in the script. For detailed descriptions of element action behaviors, see “Element
actions” on page 39 and “Element/attribute actions supported by scripts only” on page 47.

Functional equivalent //*[contains("Body", "Body")]

Match behavior Matches all elements in the tree, because the predicate tests the
parameter value as a literal string.

Sample expression /*[$parm < "Busy"]

Functional equivalent /*["Body" < "Busy"]

Match behavior Matches the HLE, because the string “Body” is lexicographically
lesser than the string “Busy”. Note that this setup is useful for
creating an “if” type of programming logic within a script; that is,
an expression such as this can effectively be used to test the
value of a parameter and control the implementation of actions
afterwards.

Sample expression //*[contains($parm,"XRef")]

Functional equivalent //*[contains("Body","XRef")]

Match behavior Matches nothing, because the predicate tests the parameter
value as a literal string.

Sample expression //*[contains(child::$parm,"Sometext")]

Functional equivalent //*[contains(Body,"Sometext")]

Match behavior Matches all elements that contain a Body child whose text
includes the string “Body”. Note the use of the child:: axis to
force the consideration as a node name.

Sample expression fmfile::$parm

Functional equivalent fmfile::Body

Match behavior Matches the HLE of a file named “Body”. Naturally, this is not a
logical name for a file. The point is to show that parameters work
with this axis as well.

Chapter 3 The Node Wizard and Other Utilities

58 FrameSLT 3.30

In some cases, you need only insert elements to define actions for an event, because the element
markup provides FrameSLT enough information. In other cases, you must enter additional
information. The following table summarizes requirements for element actions in the scripts file:

Action element Settings file requirement

Copy_elem_contents_to_CB
Copy_elem_to_CB
Delete_element
Delete_contents
Demote
Move_down
Move_up
Promote

Unwrap

Only the action element is required. The action will
occur on the matched element node(s), and no further
information is necessary.

Insert_elem_before
Insert_elem_after
Insert_first_child
Insert_last_child

Retag_as

Wrap_element_in
Wrap_contents_in

For actions that require a new element or a new
element tag, use subelements of the action element
to define what the tag should be. You can specify a
tag directly or use other methods such as a parameter
value or an XPath query for the tag name. Remember
that the specified element must appear in the
respective document’s EDD for these actions to work,
and that element tags are case-sensitive.

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 3.30 59

Paste_CB_after
Paste_CB_at_beginning
Paste_CB_at_end
Paste_CB_before
Paste_CB_over_contents

Paste_CB_over_elem

For actions that paste from the clipboard, the
clipboard is handled as follows:

• If the action element in the script contains
absolutely no content, the action will paste the
existing clipboard content without altering it. For
this type of action to be useful, you must either
populate the clipboard before running the script or
combine “copy” actions with subevents to
populate it during the script. For more information
on subevents, see “About subevents” on page 46.

• If the action element in the script contains any
content, including a single whitespace, during
processing FrameSLT will select the entire
content of the action element and copy it to the
clipboard for use with the specified element
action. You may therefore use any content that
can reside in a FrameMaker document, including
text, elements, markers, anchored frames, etc.

Note that the script settings file is a structured FM
document, whose structure is defined by its internal
EDD. Therefore, if you place content in any element
that violates that EDD, it will appear as invalid. If you
are using clipboard-based element actions to paste in
structured content, it is very likely that you will have
data in your scripts settings file that makes it invalid,
simply because your target documents are unlikely to
use the same EDD. For this reason, invalid content is
acceptable within a script settings file for
clipboard-based element actions.

To place invalid structured content into the settings
file, you will need to paste it, because you won’t be
able to insert it with the element catalog.

Note: Invalid content in the settings file will appear
as red and will lack any expected formatting
because the settings file has no instructions
for formatting it. Once it is pasted into
another document with a valid EDD,
however, it should immediately assume the
formatting you expect.

Copy_elem_text_to_parameter Requires the specification of the parameter to capture
the text.

Set_elem_text Requires a subelement to specify the source of the
text.

Assign_conditions For conditional text assignment, you must enumerate
each desired condition as the text of an individual
Condition subelement. Keep in mind that condition
names are case-sensitive, and should represent valid
conditions defined in the template(s) on which the
script will be run.

Action element Settings file requirement

Chapter 3 The Node Wizard and Other Utilities

60 FrameSLT 3.30

Attribute actions
For each event, you can have zero or more AttributeAction elements with the appropriate
subelements to define attribute actions to occur for each match of the XPath expression. The
action subelements follow the same naming convention as the Node Wizard action drop-down list
and perform the same activities. For detailed descriptions of attribute action behaviors, see
“Attribute actions” on page 41.

With all actions, you must specify some additional information with the action element, normally to
indicate which attribute(s) and perhaps value(s) the action should be performed on. The following
table summarizes requirements for attribute actions in the scripts file.

Note: If you use whitespace to delimit multiple values, a special general setting is required for
the script to recognize that convention. For more information, see “Script-level general
settings” on page 51.

Action element Settings file requirement

Copy_all_values_to_CB
Copy_first_value_to_CB

Only the action element is required. The action will
occur on the matched attribute(s), and no further
information is necessary.

Add_specified_values
Remove_specified_values
Replace_values_with_spec

These actions require that you specify one or more
attributes for the action and one or more values,
represented as the text content of Attribute and
Value subelements respectively. Keep in mind that
attribute names and values are case-sensitive.

xpath-match subelements are permitted under
Attribute elements. See the note below.

Delete_all_values
Remove_invalid_attribute

These actions require you to specify one or more
attributes, but no values are necessary because
values and attributes are deleted, not set.

xpath-match subelements are permitted under
Attribute elements. See the note below.

Move_value_to_elem_text
Copy_value_to_elem_text
Move_elem_text_to_value
Copy_elem_text_to_value

These actions require a single Attribute
subelement to specify which attribute the action
should act upon. These actions are designed to
operate with a single attribute only, with a single
value.

xpath-match subelements are permitted under
Attribute elements, because these actions can
act upon matched or specified attributes. See the
note below.

Note: These actions represent legacy
functionality which is now possible using
subevents. They are retained for
backwards-compatibility, but may be
deprecated in the future.

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 3.30 61

Move_values_to_spec_attr
Copy_values_to_spec_attr
Move_values_from_spec_attr
Copy_values_from_spec_attr
Swap_values_with_spec_attr

These actions require a single Attribute
subelement to specify which attribute the action
should act upon. These actions are designed to
operate with a single attribute only, with a single
value.

These actions always perform a transaction
between a specified attribute and an
XPath-matched attribute. Therefore, your XPath
expression should be constructed to match
attributes, and the specified attribute should appear
under the action element. The xpath-match
subelement is not applicable in this case, because
the action itself already indicates that the matched
attribute will be used for one side of the transaction.
If you were to use xpath-match as the specified
attribute, the action would have no effect because
the transaction would attempt to occur between the
matched attribute and itself.

Note: These actions represent legacy
functionality which is now possible using
subevents. They are retained for
backwards-compatibility, but may be
deprecated in the future.

Search_and_replace_string This action requires you to specify a search string
(SearchString) and optionally a replacement
string (ReplaceString). If you do not specify a
replacement string, all instances of the search string
will be deleted.

This action always occurs on XPath-matched
attributes. Therefore, no attribute specification is
required.

When this action is performed in the Node Wizard,
the dialog allows you to specify multiple search and
replace strings. Although allowed, performing
actions in this manner is discouraged, and the
scripts setting file only allows a single
SearchString and ReplaceString element. If
you have multiple search and replace activities to
conduct, use multiple events.

Action element Settings file requirement

Chapter 3 The Node Wizard and Other Utilities

62 FrameSLT 3.30

Note: Under Attribute elements, you may type an attribute name, or you may insert an
xpath-match element to indicate the attribute(s) matched by the XPath expression.
For more information about specified attributes versus matched attributes, and details
about attribute actions on matched attributes, see “Attribute actions” on page 41.

String operations
For each event, you can have zero or more StringOperation elements to define string
operations to occur for each match of the XPath expression. A string operation consists of:

• One or more arguments (Arg1, Arg2, etc.) that define the parameters for the operation. The
element catalog, in conjunction with automatic text in the scripts document, will guide you
through the argument setup of an operation. Note that an argument can either be a static
string or a parameter. If the specified value starts with a dollar sign ($), it is assumed to be a
parameter. If you need to operate on a string that begins with a dollar sign, you must assign it
to a parameter first, then call that parameter for the operation.

• A parameter to capture the result (Result element).

The following table briefly describes the supported operations. Note that their behavior generally
follows the conventional logic used by most popular programming and scripting languages.

Note: All operations that use character indexes and/or string lengths are based strictly on the
number of characters, which includes respect for multi-byte (Unicode-range) characters.
The association between single bytes and single characters will not be reliable unless all
strings contain ASCII characters only.

Set_attr_value Requires a subelement to specify the source of the
text.

Paste_CB_to_matched_attr For actions that paste from the clipboard, the
clipboard is handled as follows:

• If the action element in the script contains
absolutely no content, the action will paste the
existing clipboard content without altering it. For
this type of action to be useful, you must either
populate the clipboard before running the script
or combine “copy” actions with subevents to
populate it during the script. For more
information on subevents, see “About
subevents” on page 46.

• If the action element in the script contains any
content, including a single space, during
processing FrameSLT will select the entire
content of the action element and copy it to the
clipboard for use with the specified attribute
action. For attributes, you should supply text
content only. Elements, objects, and other such
items are not applicable to attribute values.

Action element Settings file requirement

Operation element Description

Str_op_add_strings Adds (concatenates) two, three, or four separate
strings. The third and fourth strings are optional.

Str_op_get_length Retrieves the number of characters in the string.

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 3.30 63

Numeric operations
The NumericOperations element currently supports a single operation, defined by a
Num_op_calculate_int_exp (calculate integer expression) subelement. Within this
subelement, you should provide an expression where all terms are integers and a parameter in
which to capture the result.

Str_op_index_of Retrieves the index of the first instance of the
specified substring, or -1 if the substring does not
exist. The operation includes arguments for:

• The “start” index; in other words, the index from
which to begin searching for the string. To
search from the beginning, specify zero.

• Case-sensitivity during the substring search,
applicable to ASCII characters only and
disabled (case-insensitive) by default.

Str_op_replace Replaces all instances of a specified string with a
specified replacement string. This operation
includes the optional argument to specify
case-sensitivity for the search (ASCII only), which is
turned off (case-insensitive) by default. The ability
to “clone” the case of the original string is not
supported.

Str_op_reverse Reverses the string, character by character. Note
that this operation can produce certain anomalies
with Unicode characters if code points are used to
render a single character, such as the use of a
diaeresis.

Str_op_substring Retrieves the substring between the specified
indexes.

Str_op_rtrunc_by_index Removes (truncates) the portion of the string from
the beginning to specified index, where zero is the
position “before” the first character. For example:

Original string:The ΦΣΠ fraternity
Specified index: 5
Result: ΣΠ fraternity

Str_op_trunc_by_chars Removes (truncates) the specified number of
characters from the end of the string. For example:

Original string:The ΦΣΠ fraternity
Specified chars: 5
Result: The ΦΣΠ frate

Str_op_trunc_by_index Removes (truncates) all characters following the
specified index, where zero is the position “before”
the first character. For example:

Original string:The ΦΣΠ fraternity
Specified index: 5
Result: The Φ

Operation element Description

Chapter 3 The Node Wizard and Other Utilities

64 FrameSLT 3.30

Currently, expression support is rudimentary and includes the four major operators (+, -, /, and *)
only. Additionally:

• A term may be a static integer or a previously-defined parameter.

• Multiple terms and operators may be provided.

• All terms and operators must be separated by whitespace.

• No operator “precedence,” parenthetical expressions, etc. are supported.

As an example, consider the following expression which will evaluate to 5, if parameter
“$integer was previously defined as 10:

14 - $integer + 1

Because operation precedence is not supported, all operations follow a strict calculation path from
left to right. For example, the following expression will evaluate to 9, rather than 7 as would be
expected following normal precedence rules:

1 + 2 * 3

While this feature may have some use in its current state, it is mostly introductory and has much
room for improvement, if there proves to be a need. If you have a need for improvement and/or
expansion, we would like to hear from you.

“Other” actions
A script event can have zero or more OtherActions subelements, each of which can define zero
or more advanced actions that are not necessarily related to element or attribute markup. The
following table provides a brief description of currently-supported actions.

Action element Settings file requirement

Add_object
Delete_object

Allows the addition and deletion of table rows and
columns. When feasible and applicable, it is
recommended to use these actions rather than
element-based actions that add and delete
elements.

To add or delete a row, the event XPath must match
a row element or any subelement within. To add or
delete a column, the XPath must match a cell
element or any subelement within.

Note: When deleting columns, it is
recommended to delete one column per
event and to have no other actions
following the deletion. The deletion of a
column can alter FrameMaker’s internal
representation of the structure tree such
that a new XPath query may be required
to re-establish the proper context within
the tree.

Close_file Closes the file currently being processed.

WARNING! The file will be closed as-is without
saving changes! This action positively cannot be
undone!

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 3.30 65

Disable_screen_updates
Enable_screen_updates

Disables and enables screen updates during script
processing. With screen updates disabled, scripts
can operate much faster. In all cases, screen
updates are restored following the termination of a
script, whether expected or unexpected.

Do_messaging Provides a set of interactive prompt options,
including prompts that accept user input. Options
are as follows:

• Do_Yes_No_Prompt - A prompt with Yes and
No buttons, with the initial focus on Yes.

• Do_No_Yes_Prompt - A prompt with Yes and
No buttons, with the initial focus on No.

• Do_OK_Cancel_Prompt - A prompt with OK
and Cancel buttons, with the initial focus on
OK.

• Do_Cancel_OK_Prompt - A prompt with OK
and Cancel buttons, with the initial focus on
Cancel.

• Do_OK_Prompt - A prompt with an OK button
only.

The subelements are used to specify the text of the
prompt. Additionally, for prompts that include a
Cancel or No button, the behavior following a
button click is as follows:

• If a Result subelement is included, the value
of the clicked button is assigned to the specified
parameter, where OK or Yes causes the
assignment of 1 (one) and Cancel or No
causes the assignment of 0 (zero). Afterwards,
the script continues processing normally. Note
that you can use an XPath expression to
conditionally evaluate which button was clicked
and direct further processing as appropriate.
For an example, see the samples that install
with FrameSLT.

-or-

• If no Result subelement is included, OK or
Yes causes the script to continue normally (that
is, has no effect) and Cancel or No causes the
script to abort immediately at that point.

Tip: Because you can draw from the clipboard or
a parameter for the message text, this action
may be useful for script debugging.

Action element Settings file requirement

Chapter 3 The Node Wizard and Other Utilities

66 FrameSLT 3.30

Do_messaging (continued) • Do_path_browser_prompt - A prompt with a
file system browser tree that allows you to
select a folder.

• Do_file_browser_prompt - A prompt with a
file system browser tree that allows you to
select a file.

For these prompts, if an item is selected and the
user clicks OK, the value of the item is stored in the
specified parameter (Result). In any other case,
the string specified in your local preferences file is
assigned to the parameter. Using factory settings,
this string is USER_CANCELED.

Note: To set the starting point for the browser,
you can set the special “NWS_StuffVal”
parameter with the file/path. When the
browser prompt is launched, if this
parameter contains a valid file/path, that
location will become the starting point for
the browse.

Do_messaging (continued) Do_string_entry_prompt - A prompt with a
field to enter a string.

For this prompt, if the user clicks OK, the entered
value is stored in the specified parameter (Result).
This value may be an empty string. If the user clicks
Cancel, the string specified in your local
preferences file is assigned to the parameter. Using
factory settings, this string is USER_CANCELED.
Additionally, note the following:

• Like all FrameMaker dialog boxes, the text input
field will not process backslashes (\) properly,
as these are used to precede certain escape
sequences. If you require backslashes in the
final value, consider requesting the use of
forward slashes (or some other unique
character) instead, then using a
Str_op_replace action to replace the
backslashes afterwards.

• To prepopulate the text box, you can set the
special “NWS_StuffVal” parameter with
desired string. If this parameter is set, any value
it contains becomes the default value for the
text box.

Exit_script Safely and immediately terminates script
processing.

Action element Settings file requirement

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 3.30 67

Get_misc_data Copies all contents of this element (in the scripts
file) to the current clipboard. If the element is empty,
the action fails and the current clipboard is
maintained. If the action fails, a warning is provided
if “other” action warnings are enabled in the script
GeneralSettings area.

Get_object_property
Set_object_property

Allows you to retrieve or set a property of an
underlying object. These types of actions are critical
for advanced operations such as cross-reference
generation and table sizing/formatting.

When you get a property, the value is:

• Assigned to a parameter, if an
Apply_to_parameter element is inserted
after the property element and contains a valid
parameter name

-or-

• In any other case, copied to the clipboard

When you set a property, you can set it based on
clipboard text, parameter text, XPath-queried text,
or static text entered in the scripts document. If you
want to use the text content of the
currently-matched node, use the XPath-queried text
option with the simple “to-self” expression (.).

The following properties are supported. Note that
the current list can be expanded if necessary.
Please contact West Street if you have a need for a
property that is not currently supported.

Referenced graphic properties (XPath must
match a graphic element):

ImportObFile - The filename or path of the
referenced file. If the anchored frame contains
multiple objects, a single object is selected at
random.

Marker properties (XPath must match a marker
element):

• MText - The full marker text

• MTypeName - The case-sensitive marker type,
such as “Index”

Action element Settings file requirement

Chapter 3 The Node Wizard and Other Utilities

68 FrameSLT 3.30

Page-related properties (XPath can match any
element or text frame:

• PageNumInt - The absolute page number, with
the first page starting at 1.

• PageNumStr - The “formatted” page number,
as assigned in the document numbering
properties. This value may or may not start with
1 and may or may not be an integer, according
to the document numbering properties. For
example, if numbering is set to use Roman
numerals, this property may retrieve values
such as i, ii, iii, iv, etc.

Note that if the match spans multiple pages, only
the first page is retrieved.

Whole table properties (XPath must match a table
element or any subelement):

TblTag - The case-sensitive table format

Table column properties (XPath must match a
table cell element or any subelement):

TblColumnWidth - The width of the column in
points

Cross-reference properties (XPath must match a
cross-reference element):

• XRefName - The case-sensitive
cross-reference format

• XRefSrcFile - The filename or path of the
document that contains the cross-reference
destination. If the cross-reference is internal to
the current file, this property returns an empty
string. To set this property as an internal
cross-reference, you can use the value
“Current”.

• XRefSrcText - The ID of the cross-reference
destination; that is, the “ID Reference” value of
the cross-reference element..

Get_parameter
Set_parameter

Gets or sets a parameter value.

When getting a value, it copies the value of the
specified parameter to the clipboard. If the
parameter is not set, the action fails and the current
clipboard is maintained. A warning is provided if
“other” action warnings are enabled in the script
GeneralSettings area.

When setting the value, you can choose a static
value, an XPath-queried value, the value of another
parameter, or any value that can be derived from
the current clipboard content. Any previous value of
the parameter is overwritten.

Action element Settings file requirement

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 3.30 69

FrameSLT condition management
Note: This feature set is largely overlapped by Node Wizard scripts and is under

consideration for deprecation.

FrameSLT includes a comprehensive XPath-based utility for conditional text management. Using
this utility, FrameSLT can automatically apply conditional text based on structural metadata during
actions such as:

• Inserting and wrapping elements

• Editing attributes

• Opening documents

• Updating books

Refresh_EDD Refreshes all EDD format rules in the context
document.

Save_file Saves the file currently being processed.

WARNING! This cannot be undone! In general,
you should avoid the use of this action unless
you are positive that the script is doing exactly
what you intended! If the script does something
unintended, those changes will be permanent!

Select_match Selects the currently-matched element in the
document window and Structure View, as if you
manually clicked the element in the Structure View.
This action is typically most useful for debugging in
conjunction with Do_messaging.

Set_active_file Changes the current context document to the
specified file, which is then passed to the next
sibling event. You can use an absolute path or a
filename, with forward-slashes permitted as filepath
delimiters.

This action should only be used at top-level events
and allows you to override the context of the original
file on which the script was run. Normally, the XPath
expressions for all top-level events will
automatically run against the file that was active
when the script was run. With this action, that
context file is changed for the remainder of the
script.

Note that this action is provided as a convenience
for unusual circumstances. Normally, you can use
the fmfile:: axis to change the file context with
more precision and reliability.

Update_xrefs Performs a full-document cross-reference update
on the context document, similar to selecting Edit >
Update References in the FrameMaker interface.
No errors or unresolved cross-references are
reported.

Action element Settings file requirement

Chapter 3 The Node Wizard and Other Utilities

70 FrameSLT 3.30

Because the conditional text management uses XPath, you can automatically associate conditions
with your content based on element names, hierarchy, attribute values, and more. All condition
assignment occurs at the element level, but the contextual evaluations may use any aspect
supported by FrameSLT XPath. In many respects, this feature compensates for the absence of
structure-based condition association in current EDD formatting capabilities.

Note: The dedicated condition management features have some overlap with the Node Wizard
dialog and associated scripting capabilities, which also provide conditional text
assignment based on structural markup. The important distinction is that the dedicated
features are intended as a real-time, responsive authoring tool, while Node Wizard
features are generally considered batch or post-processing activities. The two may be
used in conjunction, but you may find it easier to manage your processes if only one or
the other is used for conditions management.

Condition management settings
All condition management settings are accessed by selecting FrameSLT > Condition
Management Settings. The following tables describe these settings in detail.

General condition management settings
The general settings apply globally to auto-conditionalization features, as follows:

Setting Description

Automatically apply conditions
after...

Causes FrameSLT to assign conditions as specified by
the Auto application settings below, after the selected
actions occur. Note that element and attribute actions
cause condition application on the selected element,
while the other actions will apply conditions throughout
the whole document or book.

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 3.30 71

Enable the following warnings... Enables message box warnings, as follows:

• When a non-existent condition is found This is
the warning presented when FrameSLT attempts to
apply a specified condition that does not exist in the
current document. Note that this warning is always
disabled for document- and book-wide condition
application.

• When a condition is auto-created This is the
message presented when FrameSLT attempts to
apply a non-existent condition, and then
automatically creates it to complete the action. In the
application settings below, you can enable
auto-creation on an expression-by-expression basis.

Note: In the editor, these settings use “three-state”
checkboxes, which have an intermediate
“half-checked” state. When half-checked, the
warning is enabled for one occurrence only,
after which it will not appear again during the
current FrameMaker session.

When applying conditions, show
all conditions first

Sets all conditions to be shown before attempting to
automatically apply conditions. This setting is only
applicable to document- and book-wide condition
application. This setting is recommended, because
auto-conditionalization on content with hidden
conditional text can produce unpredictable results.

Setting Description

Chapter 3 The Node Wizard and Other Utilities

72 FrameSLT 3.30

Auto application settings
The auto-application settings allow you to specify the XPath expressions for matching the
elements to be conditionalized. Each expression contains its own independent set of parameters
that affect its behavior, including the conditions to apply if the expression is matched.

Setting Description

Expressions XPath expressions for matching elements to be
conditionalized. Attempted matching always occurs in
the order the expressions are listed. And, each
expression has its own independent set of
conditionalization parameters which appear to the right.

When expressions are added or edited, they are parsed
for validity first. Invalid expressions cannot be used and
are therefore not permitted. You can use the error report
to help debug your XPath expressions.

Note: Due to the internal processing model, all XPath
expressions are automatically enclosed within
a self::*[] expression internally. This extra
portion is not visible in the editor, but will
appear in the error report. If you use the error
report to debug expressions, keep in mind that
the expression will show this portion added.

For examples of valid expressions, see “Examples of
expressions and settings” on page 74.

Settings are active Enables the selected expression. If disabled, the
expression and associated settings are completely
ignored by FrameSLT processing, but the settings will
remain stored for later.

Clear existing conditions If the selected expression is matched, causes FrameSLT
to remove any existing conditions on the respective
element before applying the specified condition(s). If this
setting is not checked, FrameSLT will instead attempt to
add the specified condition(s) to any existing conditions.

Note: This setting is recommended, because adding
conditions may be unreliable if existing
conditions are not uniformly applied across the
entire element.

Create conditions if necessary If the selected expression is matched, causes FrameSLT
to create any specified conditions that do not currently
exist in the document. Auto-created conditions attempt to
assume the color “Red,” if the color exists in the
document. Otherwise, the new condition will have no
condition indicator.

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 3.30 73

Processing details
When an element is auto-conditionalized, the expressions are evaluated in the order that they
appear in the settings editor. FrameSLT will stop at the first expression that matches, if any, and
ignore the rest.

When you invoke auto-conditionalization at a document level, each element is evaluated
independently in logical order from the highest-level element through the ends of all branches.
Document-level auto-conditionalization operates on all structured flows, including master and
reference page flows.

Document- and book-wide actions
In the main FrameSLT menu, you can find commands for auto-conditionalizing throughout an
entire document or book. The menu also includes a command for clearing all conditions. This
command removes conditional text assignment only and does not delete any content or actual
condition tags. If any content is hidden when this command is run, it is unaffected. This command
removes all conditions assigned, whether by FrameSLT or not.

Note: Both commands operate on all structured flows.

Element-level actions
In your condition management settings, you can set FrameSLT to automatically conditionalize
during element actions such as insertion and wrapping, and attribute editing. These actions affect
the respective element only, and do not evaluate any descendant elements. For example, if you
wrap several elements in a Section element, only the Section element is auto-conditionalized,
with all child elements remaining unprocessed.

Tip: If you would like to auto-conditionalize an element and all descendant elements, use the
Apply Conditions command in the right-click menus.

Conditionalize parent element
also

If the select expression is matched, causes FrameSLT to
apply the specified condition(s) to the parent element as
well. This setting is useful for auto-conditionalizing
elements during element insertion that use EDD
auto-insertions. When expressions are evaluated during
element insertion, only the last-inserted element is
evaluated.

For example, assume you have a Section element that
automatically inserts a Heading element. Also, assume
that you would like Section elements to be
auto-conditionalized upon insertion. Because the
Heading element is always the last element inserted, it
is the only element that will be evaluated. Therefore, you
can use this setting in conjuction with a Heading-based
XPath expression to auto-conditionalize Section
elements.

Tip: See “Examples of expressions and settings” on
page 74 for an example.

Conditions The conditions to apply if the selected expression is
matched. These condition names must be specified
exactly as they appear in your template, including case.

Setting Description

Chapter 3 The Node Wizard and Other Utilities

74 FrameSLT 3.30

Examples of expressions and settings
In all cases, auto-conditionalization occurs at the element level, such as the element you just
inserted, or the element currently under evaluation during a document-wide action. It always
occurs one element at a time, with any given element evaluated independently from the context of
itself. When an expression matches, the specified conditions are applied to that element,
according the settings associated with that expression. Therefore, your XPath expressions should
be set up to match some element, or perhaps multiple elements.

Note: The remaining discussion assumes some familiarity with XPath, which is necessary for
the construction of auto-conditionalization expressions. If you are not familiar with the
XPath standard, consider reviewing “Chapter 2 About FrameSLT XPath” on page 13
first.

All evaluations begin from the context of the element under evaluation. Therefore, the most basic
method for matching elements is by name, using the self:: XPath axis. For example, the
following expression will match all Body elements, regardless of context or other factors:

self::Body

This expression says literally, “If I am myself, and my name is Body, then match.” With this
expression, any Body element in the document will match, and the associated conditions applied.
For example, if your general settings specify auto-conditionalization during element actions, all
Body elements will receive the specified condition(s) when inserted.

You can also use conjunctions within XPath expressions to denote multiple possibilities. For
example, the following expression:

self::Body or self::BulletItem

...will match all Body and BulletItem elements.

Within the scope of FrameSLT XPath support, you can also use predicate node tests for detailed
contextual evaluations. For example, the following expression will also match a Body element, but
only if it has a Product attribute set to “MyProduct”:

self::Body[@Product="MyProduct"]

The following table illustrates several more sample expressions.

Expression Description

self::Body or self::Para or self::Note Matches all Body, Para, and
Note elements.

self::Body and self::Para Matches no elements,
because an element cannot be
both a Code and a Para
element.

self::Body[@Product] Matches any Body element
with a Product attribute,
regardless of the attribute
contents.

self::*[@Product] Matches any element with a
Product attribute, regardless
of the attribute contents.

self::Body[@Product="ProdA" or @Product="ProdB"] Matches any Body element
with a Product attribute set to
either “ProdA” or “ProdB”.

self::Body[@Product!=""] Matches any Body element
with a Product attribute with
any specified value.

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 3.30 75

For more information on FrameSLT and XPath, see “Chapter 2 About FrameSLT XPath” on
page 13.

Important note about conditions management features
versus the Node Wizard

With FrameSLT, you can manage conditions with the conditions management features and/or
Node Wizard features, including Node Wizard scripting. It is important to note the differences
between the two, such that you can make a practical decision about which is more appropriate for
your situation.

If you require a conditions management tool that is author-focused and responds locally as edits
are made to a document, the dedicated conditions management features may be more
appropriate. The XPath expressions that the dedicated features use are always “current-element”

@Product="ProdA" Matches any element with a
Product attribute set to
“ProdA”.

parent::Section Matches any element that is a
direct child of a Section
element.

ancestor-or-self::Section Matches any Section
element, and any element with
a Section ancestor.

ancestor::Table[@Output="Print"] Matches any element that is a
descendant of a Table
element, whose Output
attribute is set to “Print”.

ancestor::*[@Output="Print"] Matches any element that has
any ancestor element whose
Output attribute is set to
“Print”.

Body Matches any element that has
a child Body element.

self::Section[@Product="ProdA" or Body] Matches any Section
element that has a Product
attribute set to “ProdA”, or has
a child Body element.

position()=2

 - or -

2

Matches any element that is at
the second position on its
respective branch. In other
words, it is the second child of
its parent.

self::BulletItem[position() > 1] Matches any BulletItem
element that is not the first
element on its respective
branch.

self::* Matches any element.

Expression Description

Chapter 3 The Node Wizard and Other Utilities

76 FrameSLT 3.30

focused, in that they always assume a “to-self (self::) starting context. Whether during authoring
activities or full document-wide sweeps, all condition assignment focuses on a single element at a
time, looking at its immediate context with regards to the specified XPath evaluation expressions.
Therefore, condition management occurs more on an element-by-element contextual basis, which
is a generally friendlier environment for authors.

Node Wizard activities, on the other hand, rely on overreaching XPath expressions to navigate
processing throughout a document, and typically are used as a post-process during key events,
such as publishing or saving a document. For example, you may typically have a single XPath
expression that begins at the root of a document and uses “to-descendant” axes to query through
a document and match nodes for processing. From a conditional text assignment perspective, you
can get the same results with this type of processing, but the surrounding workflow and overall feel
may differ from using the dedicated conditions management tools.

Tips on condition management
• If you use auto-conditionalization in any capacity, you should normally have all conditions

showing at the time of auto-conditionalization. Otherwise, the results may be unreliable or
unpredictable. For example, if you insert an element and it becomes conditionalized with a
condition that is currently hidden, the results may be unexpected.

• The right-click menus for text and the Structure View include an Apply Conditions command,
which auto-conditionalizes the selected element and any descendant elements.

• The expression self::* will match any element. You may choose to place this expression
last in the list as a “catch-all” or default, perhaps to ensure that an element will be
unconditional if no other expressions match. To use it in this capacity, you should specify to
clear existing conditions, and leave the conditions list empty.

• If you want to make expressions more EDD-specific, you can construct them to consider a
unique highest-level element or attribute. For example, assume that you have a particular
structure definition that uses a Chapter HLE, and you want an expression to match elements
only within that structure. An example expression might be:

self::Body and ancestor::Chapter

This expression will match Body elements, but only if the structure tree has a Chapter
element somewhere in the ancestry.

FrameSLT 3.30 77

Chapter 4 Transformations

The FrameSLT transformation engine allows granular-level content reuse for structured
documents. Conceptually, in many ways it emulates XSLT (Extensible Stylesheet Language -
Transformation), a language standard developed and maintained by the W3C. A working
knowledge of XSLT will help you understand FrameSLT, but is not necessarily required.

This chapter contains the following sections:

• “About FrameSLT vs. XSLT” on page 77

• “Required steps to perform transformations” on page 78

• “About stylesheets and transformations” on page 78

• “Customizing an EDD to allow transformation elements” on page 79

• “Launching transformations” on page 80

• “Editing transformation elements” on page 80

• “Source file details” on page 80

• “About starting contexts” on page 82

• “About cascading contexts” on page 83

• “About preserving transformation elements after a transformation” on page 85

• “Using “FSLT_template” markers” on page 86

About FrameSLT vs. XSLT
XSLT, a transformation language designed and managed by the W3 Consortium, (www.w3.org), is
a versatile standard for transforming XML documents into other text-based formats, such as
HTML. While similar in concept to XSLT, FrameSLT has many significant differences, including:

• Text files vs. WYSIWYG operation With FrameSLT, all transformations happen within the
FrameMaker interface, using structured FrameMaker files. Unlike XSLT, you can watch
FrameSLT build documents as it happens, and the WYSIWYG interface allows convenient
and comprehensive error reporting as problems occur.

• Transformation element names Many FrameSLT transformation elements are conceptually
similar to XSLT transformation elements, but not all. Those that are have the same name as
their XSLT counterparts, preceded by FSLT_. Others, however, are unique to FrameSLT and
should not be assumed to have a counterpart within the XSLT standard.

• Transformation element attributes Like XSLT, FrameSLT relies on the attributes of
transformation elements for the necessary processing instructions and metadata. And, as
applicable, those attribute names are the same as their XSLT counterparts, such as select
and test. Again, however, many FrameSLT transformation attributes are unique to
FrameSLT.

• Processing order FrameSLT processes stylesheets in a simple top-to-bottom fashion,
handling transformation elements as they are encountered. You can specify any source file at
any time, and FrameSLT queries that document with the applicable XPath. However, XSLT is

PLEASE NOTE: The transformation features of the plugin are scheduled for deprecation. They
currently remain active and are believed to work; however, they are no longer tested. Requests
for technical support and bug fixes may be denied. As of FrameSLT 3.0, Node Wizard scripts
have generally replicated this functionality and more. If you need assistance with migration,
please contact West Street.

http://www.w3.org

FrameSLT 3.30 78

somewhat different, in that you normally have a single stylesheet and source XML file, which
are processed together in an possibly non-linear fashion. Because of the FrameSLT
processing order, it does not support the same “templating” concept of XSLT, although it does
have its own means of creating templates with the FSLT_template element, which operates
differently. Also, the usage of the common XSLT XPath statement “/”, as in <xsl:template
match="/">, has no relevance in FrameSLT. These differences will become more intuitive
after you have used FrameSLT transformations a few times.

• Input The input stylesheets and source files for FrameSLT are all structured FrameMaker
documents, not XML files. However, if you can get an XML file into FrameMaker first, you can
transform it. FrameMaker can open any valid XML file and retain its structural qualities,
making the content accessible to FrameSLT.

• Output The normal output of an XSLT processor is a text file, while the output of FrameSLT
is always structured FrameMaker documents. Therefore, FrameSLT is generally catered
towards content reuse purposes only. In contrast, a common usage of XSLT is to transform
XML text files into HTML, which has no relevance within the structured FrameMaker
environment. FrameSLT can be a powerful means of managing the content you ultimately
wish to appear in HTML, but it cannot create the HTML for you.

Despite the differences, you should find that there are still many similarities, and a knowledge of
one should help you understand the other.

Required steps to perform transformations
To perform transformations with FrameSLT, you must complete two prerequisite steps:

 1 Customize your applicable EDD(s) to allow FSLT transformation elements. Transformations
require these special elements, and FrameMaker does not allow the insertion of any element
that is not defined in the EDD. For more information, see “Customizing an EDD to allow
transformation elements” on page 79.

Note: FrameSLT does provide a means of performing transformations without altering the
EDD of the stylesheet, using unstructured “transformation markers.” However, this
approach is generally not recommended for normal production work. For more
information, see “Using “FSLT_template” markers” on page 86.

 2 Import the customized EDD into your documents and build stylesheets for transformation.

Generally, the first step is performed once, after which you can build any number of stylesheets.
The EDD of a stylesheet can be any EDD, as long as it contains the applicable transformation
elements. Therefore, you can add the transformation elements to your current EDDs and use your
existing documents as stylesheets.

Note: Because the initial step involves EDD alteration, you must have EDD development
experience to complete it successfully.

About stylesheets and transformations
In FrameSLT, you set up stylesheets for transformation, much as you would with XSLT. These
stylesheets may be any structured FrameMaker document, with any content. In your stylesheets,
you can place transformation elements wherever the EDD allows, which FrameSLT can transform
into other content as specified by those element types and attributes. Your stylesheets can contain
any mix and match of “normal” content, and FrameSLT transformation elements.

When FrameSLT transforms a stylesheet, it walks through the element tree in a hierarchical
fashion, starting at the highest-level element and moving through the ends of all branches. When it
encounters a transformation element, it processes it as appropriate. All other elements are
completely ignored. Therefore, you have complete flexibility when designing stylesheets.

Chapter 4 Transformations

FrameSLT 3.30 79

Note: Currently, transformations occur in the main flow of the stylesheet document only.
Support for other flows will be added based on user demand. If you have a need to
transform flows other than the main flow, please contact West Street.

Transformation elements are prefaced by “FSLT_” and are controlled by your EDD, like any
structured FrameMaker element. Therefore, you can use any EDD to develop stylesheets,
provided that you have altered it to allow the applicable FSLT transformation elements. For more
information, see “Customizing an EDD to allow transformation elements” on page 79.

Tip: In this document, the term “stylesheet” or “stylesheet document” is used frequently to
denote the document that will undergo transformation. Keep in mind, though, that a
stylesheet is nothing more than a structured FrameMaker document that allows
transformation elements, and any structured document can be a stylesheet if it has the
appropriate EDD.

Customizing an EDD to allow transformation
elements

You may use any structured document with any EDD as a stylesheet. However, transformation
activities do require the special library of FSLT transformation elements. Therefore, for
transformation activities to take place, you must place definitions for these elements in your
EDD(s), as needed to satisfy your transformation requirements.

FSLT element definitions are constructed no differently than any structured FrameMaker element.
They are all Container-type elements with special names and attribute sets that FrameSLT
recognizes and can use for transformations. Therefore, FSLT elements are added to an EDD like
any other element. That is, you should:

 1 Copy the applicable definitions into your EDD, by copy/pasting from the definitions file
provided with FrameSLT, XForm_Elements_EDD.fm.

Note: It is highly recommended that you copy and paste from
XForm_Elements_EDD.fm, because a single typographical error in the definition
may cause unexpected results at best, and crashes at worst. Transformation
elements absolutely must have the exact attribute definitions found in the sample
EDD.

 2 Put provisions for these elements in the general rules of your existing elements, as applicable.

FrameSLT processes an FSLT element wherever it finds it, so you have complete flexibility over
where to allow them, or even which elements to allow at all. If you have no need for certain FSLT
elements, there is no reason to include them in your stylesheet EDD. For example, if you only
have a need for FSLT_copy-of elements, and you only want your stylesheets to allow them
within Section elements, you can add only the FSLT_copy-of definition and restrict it to the
Section general rule. On the other hand, for broad, unrestricted FSLT element usage, you can
copy all of the definitions into your EDD and use Inclusion rules at your highest-level elements to
allow them virtually everywhere.

If you choose to include only certain FSLT elements, be aware that some elements also require
others. For example, the FSLT_choose element requires the FSLT_when element, and perhaps
the FSLT_otherwise element, to function. Or, to create a table with an FSLT_table element,
you must also have all the other accompanying FSLT table component elements.

Notes: The concept of Inclusions is not supported by the XML standard. If you must export your
stylesheets to XML, do not use Inclusions to incorporate FSLT elements.

For more information on which FSLT elements may require others to function, see the
specific details for that element in “Chapter 5 Transformation Element Reference” on
page 89.

Chapter 4 Transformations

80 FrameSLT 3.30

Launching transformations
You can launch a transformation on the active book or document by selecting FrameSLT >
Transform. Before transformation, consider the following:

• Book vs. document transformations A book transformation is nothing more than a series
of document transformations, for each document file in the book. Keep in mind that
transformations only affect the special transformation elements as they are found, so a
document without any of these elements will be unaffected. For best results, consider opening
all your chapter files before launching a book transformation.

• Source file vs. duplicate file transformations For documents and books, you can choose
whether to transform the original files, or create duplicates first. If you choose to duplicate a
document, the new document will receive the same name as the original with the text
“(TRANSFORMED)” in the file name. If you duplicate a book, you must select an alternate
folder to receive the duplicate book. In this case, the book and all its chapter files are
duplicated, and all cross-references, graphic references, and other references are adjusted as
appropriate to reflect the new path. File names are not changed during book duplications.

Note: If you perform a transformation on your source files, be aware that these files may
be significantly altered. Therefore, you should use this option with caution. For
source file transformations, FrameSLT never saves them afterwards, so you can still
close them without saving changes to restore your original files.

Editing transformation elements
When you insert a transformation element, FrameSLT produces an editor that allows the
convenient input of the required attributes. You can also right-click on transformation elements in
the document or structure view and select Set Up FSLT Element to reproduce the editor. While
FrameMaker allows you to set attributes directly in the structure view, it is highly recommended
that you use the FrameSLT editors instead. In many cases, the editors filter your options, making it
less likely to input unusable parameters. Also, the editors perform important error checking that
can help avoid critical errors during transformations.

Note: You should never edit a source_file attribute with the native FrameMaker attribute
editor, because the FrameSLT editor performs important decisions about the specified
file that FrameMaker’s editor cannot. If you edit a source_file attribute with the
FrameMaker editor, FrameSLT will likely be unable to find the source file.

Source file details
For most transformation elements that include an XPath expression for querying, you can specify
any structured book or document as the source file for the query. If you specify a book, FrameSLT
walks through the entire book until all matches are made, as applicable.

Whenever you directly specify a source file or book, your accompanying XPath expression must
begin with the forward slash “go-to-root” axis, because FrameSLT needs the context of the root
element to begin the query. However, if you select to simply “Inherit” the source file from an
ancestor transformation element, the source file context cascades down with the XPath node
context, and your XPath can be constructed without the initial slash. If you specify “inherit,” there
must be an ancestor transformation element somewhere that explicitly specifies a document or
book. For more information on cascading contexts, see “About cascading contexts” on page 83.

Querying the “current” document
For most transformation elements with XPath, you can specify the “Current” document as the
source file, meaning that the stylesheet will query itself. In this case, the respective transformation

Chapter 4 Transformations

FrameSLT 3.30 81

element will behave as normal, perhaps drawing content from somewhere else in the stylesheet.
Be cautious when using this specification, however, because if your XPath happens to match the
transformation element currently being processed, you may cause an endless loop or any nature
of unexpected behavior. For example, if an FSLT_copy-of element happens to copy itself into its
own output, your results will be, at a minimum, unpredictable.

If you choose to query the “current” document, you can optionally set the initial XPath context to
begin at the transformation element itself. For more information on this feature, see “About starting
contexts” on page 82.

Relative vs. absolute paths
In your preferences (see “Preferences” on page 10), you can set FrameSLT to prefer relative or
absolute paths for transformation elements. If you choose relative paths but a relative path cannot
be resolved, FrameSLT will use the absolute path. Relative paths are recommended if feasible for
your implementation.

In your preferences, you can also set FrameSLT to attempt adjustment of all relative paths if the
document is saved to a new location through the FrameMaker menus. This is a recommended
setting as well.

Opening, closing, and saving source files
If necessary, FrameSLT will open any source files that are specified in transformation elements, in
order to perform the respective query. In your preferences, you have the option to allow FrameSLT
to close them again afterwards. For more information on preferences, see “Preferences” on
page 10.

FrameSLT never saves changes to your source files! Therefore, if a transformation causes a
change to a source file, FrameSLT will not close it, regardless of your preferences. In other words,
if FrameSLT makes a change to a file that it opened, it expects you to review the changes yourself
before committing the save.

There are two situations that may cause a change to a source file during transformation:

• The source file is a chapter of the book undergoing transformation If FrameSLT opens
a source file for a query, and the file happens to be a chapter of a book undergoing the
transformation, it will eventually be transformed itself. Because FrameSLT never closes files
after a transformation (due to potential unreviewed changes), a file in this situation will not be
automatically closed.

• A cross-reference was created that targets an element in the source file When
cross-references are formed in structured Frame, the ID attribute of the target element must
be populated. When FrameSLT creates a cross-reference, if the attribute is currently
unspecified, it will populate the attribute itself. Therefore, if the target document were closed
without saving the attribute change, the cross-reference would be broken afterwards. Because
FrameSLT never saves changes to your source files, it cannot close a source file in this
situation.

Use of parameters in source file paths
If your preferences are set to allow it, you can use parameters in source file paths (source_file
attributes) on transformation elements. The following notes apply:

• Usage rules are similar to those described for parameters in XPath expressions (see “About
parameters in XPath expressions” on page 85), except that file paths are not parsed. The
consequence for improper usage of parameters in file paths is simply opening the wrong file or
a failure to find the file at all.

• Transformation element dialog boxes do not allow manual editing of source file paths. You
must use the normal attribute editor to add parameters. Note that you should use forward

Chapter 4 Transformations

82 FrameSLT 3.30

slashes (/) as file separators instead of backslashes, because backslashes are considered
escape sequences and can be difficult to enter in an attribute editor.

About starting contexts
For most transformation elements with an XPath expression, if you choose to query the “current”
document, you can also choose where to set the initial context for the XPath query:

• Specified/Inherit The XPath begins at the inherited context, or at the root if the XPath
begins with a forward slash (‘/’). For more information on inherited contexts, see “About
cascading contexts” on page 83.

• FSLT element The starting context is set at the transformation element itself, and any
inherited context is ignored. If the XPath begins with a forward slash (‘/’), the root becomes the
context regardless.

As an example, consider the following element tree, with two transformation elements:

Both transformation elements have the starting_context attribute set to “Inherit.” The
FSLT_for-each element is set to find all Section elements in the current document. Then, the
FSLT_copy-of element will pick up on the respective Section context and find Heading
children. Therefore, the Heading element shown below will eventually be matched during some
iteration of the FSLT_for-each/FSLT_copy-of combination, but not in any relation to the
proximity of the transformation elements themselves.

Conversely, consider the following setup:

Chapter 4 Transformations

FrameSLT 3.30 83

In this case, the FSLT_copy-of element starting context is specifically indicated as
“FSLT_element.” This means that the starting context of the XPath expression,

following-sibling::Section/Heading

...will be the FSLT_copy-of element itself, in which case the first match will be the Heading
element seen below. Or in other words, the XPath expression means literally, “Find any Heading
elements that are children of following-sibling Section elements, beginning at the specified
context.” Because the specified context is the FSLT_copy-of element, the XPath walks straight
down and matches the Heading element.

The starting context feature of FrameSLT opens up powerful possibilities for a stylesheet to
manipulate its own structure, based on its own contents. In particular, you have significant
flexibility with the FSLT_create-xref element to create detailed cross-reference structures for
navigational aids such as inner-file tables-of-contents and “breadcrumbs.”

Note: Because the ability for a stylesheet to query itself is unique to FrameSLT, versus XSLT,
the concept of starting contexts is also unique. The attribute and its functionality have no
counterpart in XSLT.

About cascading contexts
Like XSLT, contexts from FrameSLT transformation element matches are passed down to all
descendant transformation elements. Therefore, if you have subordinate transformation elements
that use XPath, that XPath can assume the context last set by the ancestor element. For example,
consider the following two transformation elements:

Chapter 4 Transformations

84 FrameSLT 3.30

Assume that Building Cabinets.fm consists of Section elements, each with a single
Heading child. In this case, the FSLT_for-each element matches the first Section element
and passes that context down to the FSLT_copy-of element. The FSLT_copy-of XPath, then,
starts there and matches all Heading children of that Section, which should be only one.

At any time, you can reset the node context by beginning your XPath with a forward slash
(“go-to-root”). For example, consider the following variation:

In this case, the XPath of the FSLT_copy-of begins with a forward slash, meaning that it will
ignore the context passed down by the FSLT_for-each and begin anew at the root. This
particular XPath, in fact, will locate and copy over all Heading elements in Building
Cabinets.fm.

In the previous examples, you can also see the cascading nature of the source file context. The
child FSLT_copy-of element begins its query on the same source file as its parent
transformation element. If the top-level source file were a book, the FSLT_copy-of element
would assume the context of whichever chapter file contained the match made by the parent
FSLT_for-each element.

At any time, you can break the source file context and specify a new source file. However, if you
do, the associated XPath must begin with a forward slash (go-to-root). Without the go-to-root
context, FrameSLT would have no context by which to begin the query in the new document or
book.

Chapter 4 Transformations

FrameSLT 3.30 85

About preserving transformation elements
after a transformation

On an element-by-element basis, the following transformation elements can be set to remain in a
post-transformed document:

• FSLT_copy-of

• FSLT_create-xref

• FSLT_param

• FSLT_set-attribute

• FSLT_set-marker

• FSLT_template

• FSLT_value-of

If set for preservation, the respective element remains in the transformed document with the
original settings, and can undergo transformations repeatedly. In the case of FSLT_copy-of,
FSLT_value-of, FSLT_create-xref, and FSLT_template, any content copied into the
stylesheet becomes the child(ren) of the transformation element. To facilitate this action, all
contents of these elements are automatically cleared at the beginning of transformations. In the
case of the other two, the body content of the stylesheet is never affected, so they can simply
remain as is.

The ability to preserve these elements provides powerful possibilities for repetitious content reuse
and regular updates. For example:

• Text inset replacement If you use text insets, and your source text is always from structured
FrameMaker documents, you could use FSLT_copy-of, FSLT_value-of, and
FSLT_template elements as a superior replacement. With these elements set to be
preserved, you could run repeated transformations on your source files to update the “inset”
text at any time, after which the content is inserted directly into your document. The text would
be completely editable like any other content, except that you could overwrite it with an update
at will.

Tip: The sample files included with FrameSLT contain many setups that demonstrate this
functionality.

• Automatic “breadcrumb” and TOC generation If you use breadcrumbs that follow a
certain structural pattern or logic, you can use FSLT_create-xref elements to completely
automate the process and allow updates at any time. For example, assume that all your “Level
1” sections should have a cross-reference list to all subordinate “Level 2” sections. In a
situation such as this, the XPath-based cross-reference generation provided by FrameSLT
can significantly enhance the navigability of your documents, at a fraction of the time required
to do it manually.

Tip: To see an example of breadcrumbs automatically created by FrameSLT, see the
cross-reference list at the beginning of this chapter.

If you want to use FrameSLT in this fashion; that is, running repeated transformations on the same
source files, please note that all transformation elements in the files must allow preservation, and
be set up as such. Otherwise, your stylesheet will be different after the first transformation, and a
repeat transformation will not produce the same results. For example, if you have an
FSLT_for-each element in the stylesheet, it will be removed after the first transformation
regardless, and subsequent transformations will not consider it.

About parameters in XPath expressions
If enabled in your preferences, FrameSLT supports the use of parameters in XPath expressions
for transformation elements. The following notes apply:

Chapter 4 Transformations

86 FrameSLT 3.30

• Before it can be resolved in an expression, a parameter must be defined with an FSLT_param
element. Unresolved parameters will cause a parsing error and a transformation to abort.

• A parameter is indicated with a dollar sign ($). Whenever a dollar sign is encountered,
FrameSLT combines the following characters one-at-a-time until the resulting string matches a
known parameter. If the end of the expression is reached before a match is made, the
parameter is considered unresolved.

• Whenever a parameter is used in an expression, the expression cannot be parsed until the
transformation process actually reaches that element. Therefore, parsing errors may occur in
the middle of a transformation depending upon the value of the parameter at that time. For any
transformation elements that do not use parameters, the expressions are parsed before the
transformation process begins.

• Parameters are allowed anywhere in an expression, including within string literals if your
preferences are set to allow it. This freedom of usage provides considerable flexibility but also
adds a burden of responsibility for a stylesheet developer. A small error in an expression with
parameters or an unexpected parameter value at the time of transformation can have
significant consequences.

• When a parsing error occurs, the error report will show the expression with the parameter(s)
replaced by the respective value(s). You must refer to the original stylesheet to see the original
expression with the parameters.

• For external calls only, parameter values can be pre-defined before transformation (analogous
to passing parameters to an XSLT stylesheet). For more information, see “SetParam” on
page 139.

As an example, consider the following expression:
//$MyParameter

If there were a parameter named “MyParameter” defined as “Heading” at the time of
transformation, FrameSLT would attempt to parse the following expression:

//Heading

Or, if there were a parameter named “Param” defined as “Heading” at the time of transformation,
FrameSLT would attempt to parse the following expression:

//MyHeadingeter

For more information on preferences, see “Preferences” on page 10.

Using “FSLT_template” markers
Normally, transformation of a document requires that its EDD contain the necessary
transformation elements to perform the desired tasks. However, FrameSLT does provide an
alternative using unstructured “FSLT_template” markers. With these markers, you can call in
transformation “templates” from another document and transform any stylesheet, regardless of the
stylesheet’s own EDD.

To use “FSLT_template” markers, you should understand how the FSLT_template element
works first. The concepts are similar, and explained in more detail in “FSLT_template” on
page 112

Before attempting to use “FSLT_template” markers, please note the following:

• The best way to set up stylesheets and perform transformations is to adjust the EDD
accordingly and use transformation elements instead. Using “FSLT_template” markers can
allow powerful and comparable transformations, but the logistics of their use are much less
flexible.

• Transformation elements are required for transformations, regardless of how they are
introduced into the stylesheet. Therefore, to perform transformations on a stylesheet whose
EDD does not define transformation elements, the “FSLT_template” marker must copy in

Chapter 4 Transformations

FrameSLT 3.30 87

transformation content from a document whose EDD does. Therefore, you must ultimately
have some document, somewhere, that allows you to create transformation setups using the
FSLT_template element.

• Marker-based transformations are always a one-time transformation; that is, you cannot
re-transform the same document more than once, unless you are creating duplicates each
time.

• Your sample files include an example that performs a marker-based transformation. You may
find that an examination of this file to be the best way for understanding how these markers
work.

How “FSLT_template” markers work
When FrameSLT encounters an “FSLT_template” marker, it acts similarly to an FSLT_template
process, in that it looks for another FSLT_template element with the same template ID, and
copies its contents into the stylesheet. In the case of the marker, the template ID is specified as
part of the marker’s text, instead of an attribute on a structural element. As with FSLT_template
elements, you can direct the search towards an “FSLT_template” flow in the current document, or
another document altogether.

Because a “FSLT_template” marker causes content to be copied into the stylesheet, but lacks any
structural hierarchy to manage the incoming content, the process cannot be performed twice on
the same stylesheet. That is, the content will be copied in at the location of the marker, but
FrameSLT will have no means of identifying that content during any future transformations.
Therefore, “FSLT_template” markers cannot facilitate any kind of “refreshable,” text inset-type
architecture.

An “FSLT_template” marker can copy any nature of content into the stylesheet, including
transformation elements. If the stylesheet’s EDD does not provide for transformation elements,
any transformation elements will be invalid after insertion, but will be processed like any other
transformation element. FrameSLT does not require a transformation element to be valid in order
to process it.

For more information on how to set up an “FSLT_template” marker, see “Adding markers to the
stylesheet” on page 87. For more information on how the FSLT_template element works,
including information on “FSLT_template” flows, see “FSLT_template” on page 112.

Creating the marker type
To put any type of marker in a document, that type must be defined in the document’s template. In
this case, you must create an “FSLT_template” marker, if it does not already exist. To create an
“FSLT_template” marker type, refer to the FrameMaker help documentation. When creating the
marker type, note the following:

• You must adhere to the exact spelling and case of the marker type, “FSLT_template.”

• You do not need to alter the EDD, even for the markers themselves. “FSLT_template” marker
functionality is designed to work with unstructured markers.

Adding markers to the stylesheet
When adding the markers, you should insert them like any marker, selecting “FSLT_template” as
the type. For the marker text, you must enter the following:

[TemplateSourceDoc]---[TemplateID]

where:

• TemplateSourceDoc is the name of the document where the corresponding
FSLT_template element is located. If you specify “Current,” FrameSLT will search the
“FSLT_template” flow of the current stylesheet, if it exists.

Chapter 4 Transformations

88 FrameSLT 3.30

Note: If you specify an external document, you must specify a document file name only,
and the file must be in the same folder as the stylesheet. With “FSLT_template”
markers, FrameSLT cannot search any files outside of the current folder, nor can it
search whole books.

• TemplateID is the ID of the target FSLT_template element, specified in the template_ID
attribute.

• --- is the required delimiter between the two arguments. It must be exactly three dashes with
no spaces on either end.

The following are some examples of “FSLT_template” marker text:
MyTemplatesDoc.fm---Template1

(Searches MyTemplatesDoc.fm for an FSLT_template element with “Template1” specified
for the template_ID attribute. It searches the “FSLT_template” flow first, if it exists, then the
main flow.)

Current---Template2

(Searches the current document within the “FSLT_template” flow, if it exists. Note that a
current document’s EDD controls element availability in all flows, so it is not likely that you
would use a marker in this case. If your EDD allows transformation elements, you should put
them directly in the main flow, rather than using markers to call them from the “FSLT_template”
flow.

Be conscious of the location when inserting “FSLT_template” markers. An unstructured marker
can be placed nearly anywhere, but if you place it in a location that obstructs content from being
copied in, such as within an <EMPTY> container element, the process may fail. FrameSLT
attempts to insert the content at the exact location of the marker, which may present an
architectural challenge because it can be difficult to ascertain the exact “structural” location of an
unstructured marker.

FrameSLT 3.30 89

Chapter 5
Transformation Element

Reference

This chapter contains detailed information on each transformation element, including required
parameters and processing specifics. For general information on transformations, see “Chapter 4
Transformations” on page 77.

Transformation elements supported by FrameSLT include:

• “FSLT_choose” on page 89

• “FSLT_copy-of” on page 91

• “FSLT_create-xref” on page 93

• “FSLT_for-each” on page 95

• “FSLT_if” on page 97

• “FSLT_otherwise” on page 99

• “FSLT_param” on page 99

• “FSLT_set-attribute” on page 100

• “FSLT_set-marker” on page 102

• “FSLT_sort” on page 104

• “FSLT_table” on page 106

• “FSLT_tablebody” on page 110

• “FSLT_tablecell” on page 110

• “FSLT_tableheading” on page 111

• “FSLT_tablefooting” on page 111

• “FSLT_tablerow” on page 111

• “FSLT_tabletitle” on page 112

• “FSLT_template” on page 112

• “FSLT_value-of” on page 116

• “FSLT_when” on page 119

FSLT_choose
The FSLT_choose element allows you to set up a structure that makes any number of
XPath-based evaluations, stopping at the first one that holds true and performing the directed
tasks. The operation is conceptually similar to that of FSLT_if, except that you can set up multiple
conditions.

PLEASE NOTE: The transformation features of the plugin are scheduled for deprecation. They
currently remain active and are believed to work; however, requests for technical support and
bug fixes may be denied. As of FrameSLT 3.0, Node Wizard scripts have generally replicated
this functionality and more. If you need assistance with migration, please contact West Street.

FrameSLT 3.30 90

FSLT_choose processing
FSLT_choose requires one or more child FSLT_when elements, which is where the evaluations
take place. During transformation, FrameSLT steps through the FSLT_when elements in order,
testing the XPath for each one. If one matches (that is, the XPath finds something), the content of
that FSLT_when element is added to the stylesheet. After a match, no further evaluations are
made, and all other content of the FSLT_choose element is simply removed.

FSLT_choose can optionally include an FSLT_otherwise element at the end, as a default if all
previous evaluations prove false. The content of an FSLT_otherwise is always added to the
stylesheet if all FSLT_when evaluations fail. If an FSLT_when evaluation holds true, however, the
FSLT_otherwise is discarded like the rest of the FSLT_choose content.

FSLT_choose, FSLT_when, and FSLT_otherwise elements never retrieve content from the
source files themselves. However, you can use descendant transformation elements to retrieve
content based on a new or inherited context. For more information on cascading contexts, see
“About cascading contexts” on page 83.

Note: In a normal XSLT environment, an xsl:when element itself should not pass any context
to descendant transformation elements, unlike elements such as xsl:for-each which
do pass down the context established by the XPath match from the select attribute.
That is, if the XPath expression contained in the test attribute of xsl:when does make
a match, it is for testing only and the context of the match does not get passed down.
However, previous to version 2.0, FrameSLT erroneously did pass down the context
from an FSLT_when XPath match. In an effort to fix this problem while maintaining
backwards compatibility, the FrameSLT preferences now include an option to process in
either fashion. For more information, see “Preferences” on page 10.

FSLT_choose attributes
FSLT_choose has no attributes that you need to set. All XPath-based and other attributes are
specified at the child FSLT_when element(s).

FSLT_choose example
The following figure illustrates a sample FSLT_choose attribute structure:

Chapter 5 Transformation Element Reference

FrameSLT 3.30 91

During transformation, the following events occur:

 1 For the context source file, if the ChapNum attribute of the highest-level Chapter element is
set to “MyFirstChapter”, the Body element with the text “This document is MyFirstChapter” is
added to the stylesheet.

 2 Else, if the ChapNum attribute of the highest-level Chapter element is set to
“MySecondChapter”, the FSLT_copy-of element is added to the stylesheet. The
FSLT_copy-of element is subsequently processed, resulting in any child Title elements
being copied to the stylesheet.

 3 Else, if neither FSLT_when element makes a match, the Body element contained by the
FSLT_otherwise element is added to the stylesheet.

Following transformation, all FSLT_choose, FSLT_when, and FSLT_otherwise elements are
removed from the stylesheet, leaving only the contents of the applicable element for which a
match was made, if any.

FSLT_copy-of
FSLT_copy-of is one of the primary elements for retrieving content from your source files. It
performs an XPath query for elements and copies over any that match the XPath.

FSLT_copy-of processing
FSLT_copy-of operation is basic. It queries your source files based on the specified XPath, and
for any elements that it matches, it copies them to the stylesheet. The copy includes all child
elements and text. It continues copying over elements until all matches are exhausted, within the
scope of the “max_matches” attribute.

Chapter 5 Transformation Element Reference

92 FrameSLT 3.30

Because the content retrieval is element-based, your XPath should not search for attributes. If the
final axis of an FSLT_copy-of XPath matches an attribute, the transformation will abort and
return an error. Also, certain elements cannot be copied independently, such as table components.
An attempt to copy one of these elements to your stylesheet will also cause the transformation to
abort.

FSLT_copy-of attributes

FSLT_copy-of example
The following figure shows an actual element from the sample file Sample1_CopyOf, which is
included with FrameSLT:

This FSLT_copy-of element is configured to look for all Heading elements in the Building
Cabinets.fm file. For any that are found, they are copied to the stylesheet document. Following
transformation, the element structure appears as follows:

Attribute Description

select XPath expression for the query. Any element matched will be
copied to the stylesheet.

source_file Source file or book for the XPath query. For more information on
source files, see “Source file details” on page 80.

fslt_element Whether or not to preserve the FSLT_copy-of element following a
transformation. For more information, see “About preserving
transformation elements after a transformation” on page 85.

starting_context The starting context for the XPath query, either as inherited, implied
by the XPath, or the transformation element itself. This option is
only available if the element is querying the “current” stylesheet or
document. For more information, see “About starting contexts” on
page 82.

max_matches The maximum number of matches permitted for this element, with
zero (0) indicating unlimited (match all).

Chapter 5 Transformation Element Reference

FrameSLT 3.30 93

The FSLT_copy-of element still appears in the transformed document, because it was set to be
preserved. Had it been set to be removed, the results would have been the same, except that the
new Heading elements would be on the main branch, and the FSLT_copy-of element would be
gone.

To see this particular transformation occur, open Sample1_CopyOf.fm and run a transformation.

FSLT_create-xref
An FSLT_create-xref element allows you automatically create one or more cross-references,
based on an XPath query.

FSLT_create-xref processing
FSLT_create-xref performs a simple XPath query of any supported source file or book, and
creates a cross-reference to each element that is matched. It continues creating cross-references
until all matches are exhausted.

FSLT_create-xref attributes include parameters about element tags and formats for the
generated cross-references. You can also optionally choose an element to wrap each generated
cross-reference.

Because FSLT_create-xref generates new cross-references, the transformation process
requires a full-document cross-reference update following a transformation, in order to populate
the new cross-reference text. All cross-references in your document, not just those generated, will
be updated during this process.

Because cross-references always point to elements, not attributes, your XPath should search for
elements, not attributes. If your XPath does locate attributes, the resulting cross-references will
simply point to the elements where the attributes were found.

Special note on generated cross-references
All cross-references generated by FSLT_create-xref are element-based, versus the
marker-based type used in unstructured FrameMaker. Therefore, the source of any generated
cross-reference must have an ID attribute designed as a “Unique ID” type. In other words, the
XPath of an FSLT_create-xref must match elements with ID attributes, otherwise FrameSLT
cannot establish the cross-references.

In addition, if a source ID attribute is found to be empty, FrameSLT generates a unique ID and
populates the attribute, such that the cross-reference can be completed. Afterwards, you must

Chapter 5 Transformation Element Reference

94 FrameSLT 3.30

save the document containing the source element with the new unique ID, otherwise the
cross-reference will become unresolved after you close the source file.

FSLT_create-xref attributes

FSLT_create-xref example
The following figure shows the actual element structure used to create the cross-reference list at
the beginning of this chapter:

In this case, the FSLT_create-xref element looked for all Heading elements that were a child
of a Section element, which in turn was a child of the highest-level Chapter element. In other
words, all first-level headings. For all matches made, it generated a cross-reference with the
CrossReference element tag and the “Heading on page” format, and wrapped it in a
BulletItem element. The resulting structure tree looked as follows:

Attribute Description

select XPath expression for the query. Cross-references will be created for
each match made.

source_file Source file or book for the XPath query. For more information on
source files, see “Source file details” on page 80.

element_tag Element tag for the generated cross-references. This tag must be a
valid tag for cross-references, according to the stylesheet’s EDD.

format Format for the cross-reference, from the stylesheet’s template.

wrap_element An optional element to wrap each generated cross-reference.

fslt_element Whether or not to preserve the FSLT_create-xref element
following a transformation. For more information, see “About
preserving transformation elements after a transformation” on
page 85.

starting_context The starting context for the XPath query, either as inherited, implied
by the XPath, or the transformation element itself. This option is only
available if the element is querying the “current” stylesheet or
document. For more information, see “About starting contexts” on
page 82.

Chapter 5 Transformation Element Reference

FrameSLT 3.30 95

Because the element was set up to be preserved, the transformation could be run repeatedly as
desired to update the cross-reference list.

FSLT_for-each
FSLT_for-each elements allow you to repeat a particular “template” for each match of a
specified XPath expression. It is analogous to its XSLT counterpart, for-each.

FSLT_for-each processing
FSLT_for-each performs a normal XPath query, and for each match made, it adds its contents
to the stylesheet. Sometimes called a “template,” the entire contents of the FSLT_for-each are
added once for each match. In many ways, FSLT_for-each is similar to FSLT_if, except that
FSLT_if stops at the first match and adds its contents one time only, while FSLT_for-each
continues the process until all possible matches are exhausted, within the scope of the
“max_matches” attribute.

On its own, FSLT_for-each does not retrieve any content from your source files. However, it can
contain any number of other transformation elements that do, such as FSLT_copy-of and
FSLT_value-of. As with all transformation elements, normal cascading context rules apply, such
that the FSLT_for-each element will pass down the context of each match to its descendants
before adding them to the stylesheet. For more information, see “About cascading contexts” on
page 83.

Due to the templating concept and the structural changes caused by FSLT_for-each, the
original transformation element and its contents are removed from the stylesheet after
transformation. If the XPath makes no match at all, the transformed document will appear as if the
element had simply been deleted.

Tip: You can sort the content added to the stylesheet, either alphabetically or numerically, with
an FSLT_sort element.

Chapter 5 Transformation Element Reference

96 FrameSLT 3.30

FSLT_for-each attributes

FSLT_for-each example
The following figure shows a sample FSLT_for-each element structure:

This FSLT_for-each element will be looking for all Section elements in Building
Cabinets.fm. As each match is made, the Body and FSLT_copy-of elements are added to the
stylesheet. During the process, the context of the matched Section element is passed down to
the FSLT_copy-of, which is subsequently processed to copy over any Heading children of the
Section element.

Assuming that each Section element in Building Cabinets.fm has exactly one child
Heading element, the transformed structure might appear as follows:

Attribute Description

select XPath expression for the query. For each match, the contents (or
template) of the element are added to the stylesheet.

source_file Source file or book for the XPath query. For more information on
source files, see “Source file details” on page 80.

starting_context The starting context for the XPath query, either as inherited, implied
by the XPath, or the transformation element itself. This option is only
available if the element is querying the “current” stylesheet or
document. For more information, see “About starting contexts” on
page 82.

max_matches The maximum number of matches permitted for this element, with
zero (0) indicating unlimited (match all).

Chapter 5 Transformation Element Reference

FrameSLT 3.30 97

Note that the original FSLT_for-each element and its contents are gone.

FSLT_if
An FSLT_if element allows you to perform an XPath-based evaluation, and if the evaluation
holds true, the contents of the element are added to the stylesheet. Otherwise, the element and its
contents are removed.

FSLT_if processing
FSLT_if performs an XPath query until a single match is made, or the source files are exhausted.
If a match is made, FSLT_if adds its contents to the stylesheet and discontinues searching. If no
match is made, the FSLT_if element is simply deleted. In other words, if the XPath finds anything
at all, the “if” evaluation is considered “true,” and no further searching is required.

FSLT_if supports basic parameter evaluation for the XPath, for example:
$MyParameter="ThisValue"

For any parameter evaluation that is more complex, such as with the use of functions, you should
start the XPath with a “to-self” axis, then put the evaluation into a predicate. For example:

.[contains("$MyParameter", "ThisValue")]

On its own, FSLT_if does not retrieve any content from your source files. However, it can contain
any number of other transformation elements that do, such as FSLT_copy-of and
FSLT_value-of.

Due to the templating concept and the structural changes caused by FSLT_if, the original
transformation element and its contents are removed from the stylesheet after transformation. If
the XPath makes no match at all, the transformed document will appear as if the element had
never existed.

Note: In a normal XSLT environment, an xsl:if element itself should not pass any context to
descendant transformation elements, unlike elements such as xsl:for-each which do
pass down the context established by the XPath match from the select attribute. That
is, if the XPath expression contained in the test attribute of xsl:if does make a
match, it is for testing only and the context of the match does not get passed down.
However, previous to version 2.0, FrameSLT erroneously did pass down the context
from an FSLT_if XPath match. In an effort to fix this problem while maintaining
backwards compatibility, the FrameSLT preferences now include an option to process in
either fashion. For more information, see “Preferences” on page 10.

Chapter 5 Transformation Element Reference

98 FrameSLT 3.30

FSLT_if attributes

FSLT_if example
The following figure shows a sample FSLT_if element structure:

This FSLT_if element will be looking for a Section element in Building Cabinets.fm.
When the first match is made, the Body and FSLT_copy-of elements are added to the
stylesheet. During the process, the context of the matched Section element is passed down to
the FSLT_copy-of, which is subsequently processed to copy over any Heading children of the
Section element. After the first match of FSLT_if, its query stops and it is removed. The
FSLT_copy-of, however, performs as normal, continuing its own query until all matches are
exhausted.

In essence, this setup will copy over the first heading in Building Cabinets.fm. After
transformation, the structure might appears as follows:

Note that the original FSLT_if element and its contents are gone.

Attribute Description

test XPath expression to test for a match. If a match is made, the
contents (or template) of the element are added to the stylesheet.

source_file Source file or book for the XPath query. For more information on
source files, see “Source file details” on page 80.

starting_context The starting context for the XPath query, either as inherited, implied
by the XPath, or the transformation element itself. This option is only
available if the element is querying the “current” stylesheet or
document. For more information, see “About starting contexts” on
page 82.

Chapter 5 Transformation Element Reference

FrameSLT 3.30 99

FSLT_otherwise
The FSLT_otherwise element is an optional component of an FSLT_choose element structure.
It contains the default content to be added to the stylesheet if no preceding FSLT_when elements
make an XPath match.

FSLT_otherwise processing
See FSLT_choose.

FSLT_otherwise attributes
FSLT_otherwise has no attributes that you need to set. All XPath-based and other attributes are
specified at the child FSLT_when element(s). FSLT_otherwise is only used as a default if all
the XPath evaluations of the preceding FSLT_when elements fail to make an XPath match.

FSLT_otherwise example
See FSLT_choose.

FSLT_param
FSLT_param assigns a value to a parameter, either as retrieved from the contents of a matched
node or as a static value. Once a parameter is defined, it can be retrieved for use in:

• XPath expressions (see “About parameters in XPath expressions” on page 85)

• Source file paths (see “Use of parameters in source file paths” on page 81)

• FSLT_value-of elements

Tip: If you are new to XSLT terminology, you can think of a parameter as a variable that can be
set during transformation, then its value retrieved later in the situations listed above.

Note that an FSLT_param element is ignored during API-based transformations if the named
parameter is already defined. For more information, see “SetParam” on page 139.

FSLT_param processing
FSLT_param operation is generally simple; however, the flexibility allowed with its configuration
can cause confusion. When encountered, it assigns a value to the named parameter by either:

• Using the specified static value

-or-

• Making an XPath query and retrieving the contents of the first matched node, up to the first
100 characters for element matches or the first value for attribute matches. If no match is
made or the matched node is empty, the parameter is assigned an empty string.

For any transformation launched manually, no parameters are defined until FSLT_param
elements are encountered. In other words, parameter assignment does not carry over to
subsequent transformation actions. Also, unlike XSLT, parameters have no scope and may be
redefined an indefinite number of times.

Note: An exception exists with API-launched transformations, which allow the predefinition of
parameters. For more information, see “SetParam” on page 139.

Chapter 5 Transformation Element Reference

100 FrameSLT 3.30

FSLT_param attributes

FSLT_set-attribute
FSLT_set-attribute allows you to set an attribute of a parent or preceding-sibling element. It
can use XPath to find the value for the attribute, or you can specify a preset value. In either case,
XPath is required, and a match must be made for the attribute to be set at all.

FSLT_set-attribute processing
FSLT_set-attribute performs an XPath query until a single match is made, or the source files
are exhausted. If a match is made, FSLT_set-attribute sets the value of the specified
attribute to either the contents of the matched node (element or attribute), or to a preset value. If
no match is made, the attribute is not set at all.

Because an XPath match is required, if you are specifying a preset value that you want to be set
every time, your XPath should be a generic expression that is guaranteed to make a match. For
example, the expression /* used on the Current source file will match the highest-level element
of the stylesheet, which by nature always exists.

FSLT_set-attribute can set an attribute on either a parent or preceding-sibling element. This
specification is part of the required FSLT_set-attribute parameters. If the specified attribute
cannot be found for any reason, a warning is printed to the error report and transformation
continues.

FSLT_set-attribute adds the specified or derived value to any existing values of the attribute.
It does not replace or delete any existing values. Also, if the XPath matches an attribute, only the
first value of the attribute is extracted and applied to the new attribute.

Tip: For wide-scale attribute manipulation, the FrameSLT Node Wizard may be more
appropriate for some situations, used on the stylesheet after transformation. For more
information, see “Chapter 3 The Node Wizard and Other Utilities” on page 35.

Attribute Description

name Parameter name. The dollar sign ($) used when the parameter is
referenced elsewhere is not required.

starting_context The starting context for the XPath query, either as inherited, implied
by the XPath, or the transformation element itself. This option is
only available if the element is querying the “current” stylesheet or
document. For more information, see “About starting contexts” on
page 82.

select Either:

• A static value for the parameter enclosed in single quotes (')

-or-

• An XPath expression to query for the parameter value

source_file Source file or book for the XPath query. If you are specifying a
static value for the parameter, select the current document if no file
context is available to be inherited. For more information on source
files, see “Source file details” on page 80.

fslt_element Whether or not to preserve the FSLT_param element following a
transformation. For more information, see “About preserving
transformation elements after a transformation” on page 85.

Chapter 5 Transformation Element Reference

FrameSLT 3.30 101

FSLT_set-attribute attributes

FSLT_set-attribute example
The following figure shows a sample FSLT_set-attribute element:

Attribute Description

select XPath expression for the query. If a match is made, the specified
attribute is set, either with a preset value, or with the content derived
from the matched node. If a preset value is specified, it always
overrides the matched node content.

source_file Source file or book for the XPath query. For more information on
source files, see “Source file details” on page 80.

attribute Name of the attribute to set. Case is considered.

value Preset value, which if specified, is the value applied to the attribute.
If specified, this value always overrides the content of the matched
node. If the XPath makes no match, however, no value is applied at
all.

target_element The element containing the attribute to set, either a parent or
preceding-sibling element, in relation to the FSLT_set-attribute
element.

fslt_element Whether or not to preserve the FSLT_set-attribute element
following a transformation. For more information, see “About
preserving transformation elements after a transformation” on
page 85.

starting_context The starting context for the XPath query, either as inherited, implied
by the XPath, or the transformation element itself. This option is only
available if the element is querying the “current” stylesheet or
document. For more information, see “About starting contexts” on
page 82.

Chapter 5 Transformation Element Reference

102 FrameSLT 3.30

The FSLT_set-attribute element will attempt to find an AttributeA on the highest-level
Chapter element of the current stylesheet. If found, it will extract the value of the Chapter’s
AttributeA and apply it to the Section’s AttributeA. If the highest-level element is not
named Chapter, or it has no AttributeA, nothing happens.

Note that the value attribute is unspecified. If specified, and the XPath made a match, this value
would be applied to AttributeA, rather than the content derived from the XPath match.

FSLT_set-marker
FSLT_set-marker allows you to set the text of a parent or preceding-sibling marker element. It
can use XPath to find the text for the marker, or you can specify a preset value. In either case,
XPath is required, and a match must be made for the marker to be set at all.

FSLT_set-marker processing
FSLT_set-marker performs an XPath query until a single match is made, or the source files are
exhausted. If a match is made, FSLT_set-marker sets the text of the specified marker to either
the contents of the matched node (element or attribute), or to a preset value. If no match is made,
the marker is not set at all.

Because an XPath match is required, if you are specifying a preset value that you want to be set
every time, your XPath should be a generic expression that is guaranteed to make a match. For
example, the expression /* used on the Current source file will match the highest-level element
of the stylesheet, which by nature always exists.

FSLT_set-marker can set either a parent or preceding-sibling marker element. This
specification is part of the required FSLT_set-marker parameters. Because marker elements
generally do not allow children, normally the “preceding-sibling” specification should be used. If the
specified marker element cannot be found for any reason, a warning is printed to the error report
and transformation continues.

Note: FSLT_set-marker replaces any text currently assigned to the target marker.

Chapter 5 Transformation Element Reference

FrameSLT 3.30 103

FSLT_set-marker attributes

FSLT_set-marker example
The following figure shows a sample FSLT_set-marker element:

The FSLT_set-marker element will attempt to find a Title element child of the highest-level
Chapter element of the current stylesheet. If found, it will extract the text of the Title apply it to
the SampleMarker marker. If the highest-level element is not named Chapter, or it has no
Title child.

Note that the value attribute is unspecified. If specified, and the XPath made a match, this value
would be applied to SampleMarker, rather than the content derived from the XPath match.

Attribute Description

select XPath expression for the query. If a match is made, the specified
marker is set, either with a preset value, or with the content derived
from the matched node. If a preset value is specified, it always
overrides the matched node content.

source_file Source file or book for the XPath query. For more information on
source files, see “Source file details” on page 80.

value Preset value, which if specified, is the text applied to the marker. If
specified, this value always overrides the content of the matched
node. If the XPath makes no match, however, no value is applied at
all.

target_element The element representing the marker to set, either a parent or
preceding-sibling element, in relation to the FSLT_set-marker
element.

fslt_element Whether or not to preserve the FSLT_set-marker element
following a transformation. For more information, see “About
preserving transformation elements after a transformation” on
page 85.

starting_context The starting context for the XPath query, either as inherited, implied
by the XPath, or the transformation element itself. This option is
only available if the element is querying the “current” stylesheet or
document. For more information, see “About starting contexts” on
page 82.

Chapter 5 Transformation Element Reference

104 FrameSLT 3.30

FSLT_sort
FSLT_sort allows you to sort the content added to the stylesheet by an FSLT_for-each
element, or table rows added by an FSLT_tablerow element, either alphabetically or
numerically. The sort criterion is based on a text string or number derived with an XPath
expression. This element is analogous to its XSLT counterpart, sort.

FSLT_sort processing
If present, FSLT_sort must be the first child of an FSLT_for-each or FSLT_tablerow
element, where it is processed once for each match made by the respective transformation
element. Each time, FSLT_sort performs an XPath query, normally starting from an inherited
context, until a single match is made. Once a match is made, FrameSLT evaluates the content of
the matched node (element or attribute), versus the contents of all previously matched nodes, and
determines where to place the remaining contents of the FSLT_for-each element or the new
table row. In other words, FSLT_for-each or FSLT_tablerow adds its content to the stylesheet
once for each match, and FSLT_sort decides where to place that content in relation to
previously-placed content. If FSLT_sort cannot make a match itself, it has no effect.

As mentioned previously, the criterion for evaluation is the content of a node matched with XPath.
Nearly always, the XPath starts at a context set from the FSLT_for-each or FSLT_tablerow
element match, evaluating some nearby element, or perhaps the element that FSLT_for-each
or FSLT_tablerow matched itself. For example, if the XPath expression of the FSLT_sort
element is a simple period (.), which means “go-to-self,” the sort evaluations are performed based
on whichever node was matched by FSLT_for-each or FSLT_tablerow.

FSLT_sort allows the specification of either a numeric or string data type for the evaluation. In
many cases, the sort results may be the same. However, some numbers, as a string, are lexically
“smaller” than the equivalent numeric evaluation. For example, a text evaluation will regard “10” as
smaller than “2,” while a numeric evaluation would return the opposite. Therefore, if you know for
certain that all the evaluation items will be numbers, you should select the numeric comparison.

Before using FSLT_sort note the following:

• Currently, FrameSLT only allows a single FSLT_sort element per FSLT_for-each or
FSLT_tablerow loop.

• Currently, numeric evaluations currently support integers only.

• FSLT_sort does not provide a source_file specification, because the only logical query
would be on the same document queried by the FSLT_for-each or FSLT_tablerow
element.

Special note on using FSLT_sort with FSLT_tablerow
When used to sort table rows generated by FSLT_tablerow, the results are conceptually similar
as when used with FSLT_for-each. The rows of the resulting table are sorted according to the
FSLT_sort XPath match, the same as they would be in any other circumstance.

However, FSLT_tablerow/FSLT_sort combinations may require an additional consideration if
you have multiple sibling FSLT_tablerow elements under one FSLT_table structure. You can
have multiple FSLT_tablerow elements generating rows, each with its own FSLT_sort child,
but this setup must be constructed carefully. If each FSLT_sort has the same order (ascending/
descending) and type (text/numeric) settings, the sort should work as expected, and all generated
rows will be sorted together. However, if you mix the order and/or type between FSLT_sort
elements under a single FSLT_table structure, the sorting results may be unpredictable.

Chapter 5 Transformation Element Reference

FrameSLT 3.30 105

FSLT_sort attributes

FSLT_sort example
The following figure shows a sample FSLT_for-each / FSLT_sort element setup:

The FSLT_for-each element queries Building Cabinets.fm, matching all Section
elements. For each match, the contents of the FSLT_for-each element (excluding FSLT_sort)
are added to the stylesheet. Before they are added, however, the FSLT_sort evaluates the text
of the Heading child of the matched Section element and determines where to place the
material. This process occurs once for each match made by FSLT_for-each.

After transformation, the element tree might appear as follows:

Attribute Description

select XPath expression for the query. If a match is made, the specified
marker is set, either with a preset value, or with the content derived
from the matched node. If a preset value is specified, it always
overrides the matched node content.

order Order by which to sort, either ascending or descending.

data-type Type of data to be evaluated. For more information, see “FSLT_sort
processing” on page 104.

Chapter 5 Transformation Element Reference

106 FrameSLT 3.30

Note the alphabetical order of the text of the Heading elements. Also note how “STEP 10” was
seen as lexically “smaller” than “STEP 2.”

FSLT_table
FSLT_table allows you build structured FrameMaker tables with content extracted from your
source files and/or other static content. FSLT_table and associated elements are required for
table construction because of the specialized nature of FrameMaker table and table component
elements. FSLT_table and associated elements are unique to FrameSLT and have no
counterparts in XSLT.

FSLT_table structure and requirements
To use FSLT_table, you must essentially build a mock structure of the table you wish to
generate, using the appropriate transformation elements for each required part. These
transformation elements include:

• FSLT_table

• FSLT_tabletitle

• FSLT_tableheading

• FSLT_tablebody

• FSLT_tablefooting

• FSLT_tablerow

• FSLT_tablecell

Each of these elements represents a specific type of table component element that can be part of
a FrameMaker table. A complete FSLT_table structure should resemble the basic structure of
the intended output table in hierarchy and element order.

The requirements for using FSLT_table are stringent and must be followed carefully. All
associated transformation elements must be in the correct position with valid parameters. During
transformation, FrameSLT performs a comprehensive validation of all FSLT_table structures and
will abort the process if any pieces are invalid or out of place. Although these rules place added
responsibility on you as a stylesheet designer, they provide the distinct advantage of helping to
ensure that your tables generate without error and look exactly as you had intended.

Chapter 5 Transformation Element Reference

FrameSLT 3.30 107

Tip: You can select FrameSLT > Check Stylesheet before launching a transformation to ensure
that your tables are error-free.

Basic steps for creating a valid FSLT_table structure
Creating an FSLT_table structure is similar to creating a normal FrameMaker table structure, in
that you must place the required component elements in the correct order and hierarchy to satisfy
FrameMaker’s table requirements. Like real tables, your FSLT_table structures must have
certain elements, such as the table, body, a row, and at least one cell. Other transformation
elements are optional, much like their FrameMaker counterparts, such as the heading and the
footing.

To create an FSLT_table structure, you might follow these general steps:

 1 Insert an FSLT_table element, specifying the number of columns and other important
settings.

 2 Insert an FSLT_tablebody element, as a child of the FSLT_table element.

 3 Insert an FSLT_tablerow element, as a child of the FSLT_tablebody element, specifying
the XPath expression for row generation. For more information, see “Generating rows with
FSLT_tablerow” on page 108.

 4 Insert FSLT_tablecell elements under the FSLT_tablerow element. The number of cell
elements must match the number of columns you specified at the FSLT_table element.

At this point, you have a valid FSLT_table structure, with all the basic requirements. You can
then begin to add more elements as needed to complete the table, such as heading or footing
elements, and contents for the table cells.

Complete FSLT_table structure example
The following figure illustrates a complete two-column FSLT_table structure, with an optional
table heading and some contents within the cells. The attributes have been condensed for space
considerations:

Chapter 5 Transformation Element Reference

108 FrameSLT 3.30

This table has two columns, as evidenced by the two FSLT_tablecell elements in each
FSLT_tablerow element. Each FSLT_tablecell element contains a Body element, which
may contain any text and is left as-is like any other non-transformation element. This table does
not have a title or a footing, but if it did, those elements would be in the same positions that you
would expect to see them in a normal FrameMaker table.

Generating rows with FSLT_tablerow
FSLT_tablerow is the primary generation element that causes your tables to grow. Each
FSLT_tablerow element has an XPath expression, which performs normal queries of your
specified source files. For each XPath match, a new row is generated, using the subordinate
FSLT_tablecell elements as the template. You may have as many FSLT_tablerow elements
as desired, with each being processed in order and generating rows as appropriate. All other
transformation table elements contain no XPath, making them essentially static templates.

FSLT_tablerow elements initiate row generation only and do not extract any content from your
source files. However, your FSLT_tablecell elements can contain any nature of valid
transformation elements which may bring in content. Any time FSLT_tablerow makes a match
and generates a row, the normal rules of context inheritance apply and subordinate transformation
elements are passed the context of the XPath match. As always, though, you may choose whether
or not to use that context, on an element-by element basis. For more information, see “About
cascading contexts” on page 83.

Chapter 5 Transformation Element Reference

FrameSLT 3.30 109

Tip: If you know you want a particular row to be generated only once in all cases, your XPath
should be a generic expression that is guaranteed to make a single match. For example,
you may always want a single heading row, without any concern for the particulars of an
XPath query. In this case, you could use the expression /* on the Current source file,
which will always cause a single match of the highest-level element of the stylesheet.

Sorting generated table rows with FSLT_sort
Using an FSLT_sort element as the first child of an FSLT_tablerow element, you can sort the
generated rows by an XPath-based alphabetical or numerical criterion. You can even sort rows
generated by multiple sibling FSLT_tablerow elements. This functionality of FSLT_sort is
unique to FrameSLT and has no counterpart in XSLT. For more information, see FSLT_sort and
especially “Special note on using FSLT_sort with FSLT_tablerow” on page 104.

Other FSLT table component element setups
Table transformation elements other than FSLT_table and FSLT_tablerow simply require you
to specify an element tag for their counterparts in the generated table. In most respects, they
perform a simple templating function, laying out a precise table structure that FrameSLT can follow
to generate the final table.

Checking an FSLT_table structure before transformation
Because of the strong possibility for errors, you should validate your stylesheets by selecting
FrameSLT > Check Stylesheet before running transformations. This function performs the same
pre-processing validation that occurs during transformation and will help you avoid aborts during
actual transformations.

FSLT_table processing
Before transforming an FSLT_table structure, FrameSLT performs comprehensive validation
that includes:

• Checking the required hierarchy and presence of transformation elements

• Verifying that specified element tags are valid for the components they will represent

• Ensuring that all FSLT_tablerow elements contain the same number of FSLT_tablecell
children as there are columns specified at the FSLT_table element.

Afterwards, FrameSLT generates a table based on the template that the FSLT_table structure
represents. Finally, FrameSLT uses the XPath to generate rows, based on settings at the
FSLT_tablerow elements. For more information, see “Generating rows with FSLT_tablerow”
on page 108.

For any heading or footing component whose FSLT_tablerow XPath expressions make no
matches, no rows are generated, and therefore those components are removed from the final
table. If the same situation occurs with the FSLT_tablebody element, the entire table is
removed, because a FrameMaker table must have a body. No warning is given if table generation
fails due to unsuccessful XPath queries.

FSLT_table attributes
Attribute Description

element_tag Valid table element tag from the stylesheet’s EDD. An invalid tag will
abort the transformation.

format Valid table format from the stylesheet’s template.

Chapter 5 Transformation Element Reference

110 FrameSLT 3.30

FSLT_table example
To see a functional example of an FSLT_table element structure, see the Sample7_Table.fm
file that came with FrameSLT.

FSLT_tablebody
The FSLT_tablebody element is a required component of an FSLT_table element structure. It
acts as a simple template placeholder for the “real” table body element that will appear in the final
table.

FSLT_tablebody processing
See FSLT_table.

FSLT_tablebody attributes

FSLT_tablebody example
See FSLT_table.

FSLT_tablecell
The FSLT_tablecell element is a required component of an FSLT_table element structure. It
acts as a simple template placeholder for a “real” table cell element that will appear in the final
table.

FSLT_tablecell processing
See FSLT_table.

FSLT_tablecell attributes

FSLT_tablecell example
See FSLT_table.

num-columns Number of columns in the final table. Each FSLT_tablerow element
in the template structure must contain this same number of
FSLT_tablecell elements.

col_widths Widths for each individual column, in inches.

Attribute Description

Attribute Description

element_tag A valid table body element tag from the stylesheet’s EDD.

Attribute Description

element_tag A valid table cell element tag from the stylesheet’s EDD.

Chapter 5 Transformation Element Reference

FrameSLT 3.30 111

FSLT_tableheading
The FSLT_tableheading element is an optional component of an FSLT_table element
structure. It acts as a simple template placeholder for a “real” table heading element that will
appear in the final table.

FSLT_tableheading processing
See FSLT_table.

FSLT_tableheading attributes

FSLT_tableheading example
See FSLT_table.

FSLT_tablefooting
The FSLT_tablefooting element is an optional component of an FSLT_table element
structure. It acts as a simple template placeholder for a “real” table footing element that will appear
in the final table.

FSLT_tablefooting processing
See FSLT_table.

FSLT_tablefooting attributes

FSLT_tablefooting example
See FSLT_table.

FSLT_tablerow
The FSLT_tablerow element is a required component of an FSLT_table element structure. It
acts as a template placeholder for a “real” table row element that will appear in the final table, and
it contains the XPath expression that contributes to the generation of table rows.

FSLT_tablerow processing
See FSLT_table.

Attribute Description

element_tag A valid table heading element tag from the stylesheet’s EDD.

Attribute Description

element_tag A valid table footing element tag from the stylesheet’s EDD.

Chapter 5 Transformation Element Reference

112 FrameSLT 3.30

FSLT_tablerow attributes

FSLT_tablerow example
See FSLT_table.

FSLT_tabletitle
The FSLT_tabletitle element is an optional component of an FSLT_table element structure.
It acts as a simple template placeholder for a “real” table title element that will appear in the final
table.

FSLT_tabletitle processing
FSLT_tabletitle will cause a title to be added to the generated table. Because the title of a
table is controlled by the table format, this element will cause a format override if the specified
table format at the FSLT_table element does not included a title. If it does, the title will appear in
the position indicated in the specified format. The final title will contain any content that the
FSLT_tabletitle element contained.

For more processing information, see FSLT_table.

FSLT_tabletitle attributes

FSLT_tabletitle example
See FSLT_table.

FSLT_template
FSLT_template is a placeholder element for a “template” that is stored in another flow, or
another document. A template can be any piece of structured content, including other
transformation elements. During transformation, when FrameSLT encounters an

Attribute Description

element_tag A valid table row element tag from the stylesheet’s EDD.

select XPath expression for the query. For each match, a row is added to
the table, using the template contained within the FSLT_tablerow
element. The context of each match is passed down to any
transformation elements contained within the FSLT_tablerow
element. For more information, see “Generating rows with
FSLT_tablerow” on page 108.

source_file Source file or book for the XPath query. For more information on
source files, see “Source file details” on page 80.

starting_context The starting context for the XPath query, either as inherited, implied
by the XPath, or the transformation element itself. This option is only
available if the element is querying the “current” stylesheet or
document. For more information, see “About starting contexts” on
page 82.

Attribute Description

element_tag A valid table title element tag from the stylesheet’s EDD.

Chapter 5 Transformation Element Reference

FrameSLT 3.30 113

FSLT_template element, it finds the specified template and copies it into the stylesheet, and
resumes transformation. Because FSLT_template elements can remain in a stylesheet
document following transformation, they provide a means of transforming a stylesheet repeatedly
using any nature of transformation setups, without having to create duplicate files to preserve the
original stylesheet.

Note: FSLT_template has some loose similarities to its XSLT counterpart, xsl:template,
but operates in a fundamentally different fashion. If you are familiar with XSLT, do not try
to equate the two.

FSLT_template processing
In comparison to other transformation elements, FSLT_template processing is simple. When
FrameSLT encounters this element during transformation, it looks for the corresponding template,
identified by the template_ID attribute. If the corresponding template is found, the content is
copied into the stylesheet as the contents of the original FSLT_template element.

When searching for the corresponding template, FrameSLT is actually searching for another
FSLT_template element with the same specified ID. When found, FrameSLT copies the
contents of the “source” FSLT_template element into the contents of the original
FSLT_template element, and continues transformation.

FSLT_template does not use any XPath. It uses the template ID only to locate the source
template.

Locations for “source” FSLT_template elements
When searching for a source FSLT_template element, FrameSLT looks in two places, in this
order:

 1 An “FSLT_template” flow in the specified source document, if it exists.

 2 The main flow of the specified document.

Note: If the source document is specified as “Current,” that is, the stylesheet itself,
FrameSLT looks in the “FSLT_template” flow only.

The source FSLT_template element can be anywhere in these locations, nested in any nature of
structural organization. FrameSLT looks only for an element with the same template_ID
attribute, and if found, copies the contents of it into the original FSLT_template in your stylesheet
document.

Tip: For the source file, you can also specify a book. In this case, FrameSLT will step through
the entire book looking for the corresponding source FSLT_template element. Note that
for each chapter file, it will attempt to look in the “FSLT_template” flow first.

About the “FSLT_template” flow
As mentioned in previous sections, FrameSLT always searches in an “FSLT_template” flow first, if
it exists. The primary intent of this functionality is to allow you to put templates on the reference
pages of your stylesheet. That is, you can create a new reference page, create a flow on it called
“FSLT_template,” and put all your templates there. In this manner, your templates always remain
with your document.

You do not necessarily need to use an “FSLT_template” flow at all, if you want to store your
templates in the main flow of a separate document. This functionality is provided simply as a
convenience should you choose to use it.

To create an “FSLT_template” flow on your reference pages, follow these general steps:

 1 Select View > Reference Pages.

 2 Select Special > New Reference Page.

 3 In the add page dialog, enter FSLT_template.

Chapter 5 Transformation Element Reference

114 FrameSLT 3.30

Note: The name of the page actually doesn’t matter, but it may help you keep your
reference pages in order.

 4 On the new reference page, which was probably added at the end of the pages, draw a new
text frame.

 5 Select the object pointer tool, right-click on the new frame, and select Object Properties.

 6 Under Flow Tag, enter FSLT_template, and select Autoconnect.

Note: The flow name must be absolutely correct, including case.

 7 Begin a structure tree in the flow just like you would the main flow, and place the desired
source FSLT_template elements anywhere you prefer.

Using FSLT_template to facilitate complex re-transformations
Normally, many transformation element types must be removed following a transformation, such
as FSLT_for-each and FSLT_table. Therefore, to use these types of elements “as is,” you
must create a duplicate document when transforming if you want to preserve the original
stylesheet.

However, because FSLT_template can remain in a stylesheet through repeated
transformations, you can use it to retrieve complex transformation setups from elsewhere
“on-the-fly.” That is, it can act as a placeholder for a detailed transformation setup that gets copied
in as original at the time of transformation, every transformation. This allows you to re-transform
the same document repeatedly without any loss of integrity, regardless of the setup.

Note: During transformation, the first thing that FrameSLT does to FSLT_template is delete
all its current contents. Then, it finds the corresponding source element and copies over
the content. In this manner, the process is always a pure “refresh.”

FSLT_template attributes
Note: When a source FSLT_template is located and the content is copied over, only the

content gets copied. The source FSLT_template element itself is never copied.
Therefore, the source_file and fslt_element attributes are irrelevant for source
elements.

FSLT_template example
The following figure shows an “original” FSLT_template element in the main flow of a stylesheet,
and afterwards the corresponding template element in the “FSLT_template” flow on a reference
page:

Attribute Description

template_ID ID for the template, which must be identical between the original and
source FSLT_template elements. This value can be any
alphanumeric string up to 255 characters.

source_file Source file or book to search for the source FSLT_template element.
This attribute is only relevant for “original” elements.

fslt_element Whether or not to preserve the FSLT_template element following a
transformation. This attribute is only relevant for “original”
FSLT_template elements. For more information, see “About
preserving transformation elements after a transformation” on page 85.

Chapter 5 Transformation Element Reference

FrameSLT 3.30 115

FSLT_template element in the main flow

FSLT_template element in the “FSLT_template” flow, on a reference page

Note that the template_ID attributes are the same. During transformation, when the original
FSLT_template element is encountered, all its contents are deleted, and the contents of the
source element are copied in. For this example, the original FSLT_template element has no
contents, so nothing needs to be deleted.

In the moment after these two steps are completed, the setup in the original FSLT_template
element would look as follows:

Chapter 5 Transformation Element Reference

116 FrameSLT 3.30

Setup the moment after processing the FSLT_template element

Note that the setup pictured above is only momentary, and you should never actually see it.
FrameSLT should continue transforming, starting with the content it just copied in, including the
FSLT_for-each, FSLT_sort, and FSLT_value-of elements.

FSLT_value-of
FSLT_value-of is one of the primary elements for retrieving content from your source files. It
performs an XPath query and copies over the contents of any element or attribute that it matches,
normally discarding all element tags of any matched and subordinate elements, as applicable. At a
fundamental level, FSLT_value-of is analogous to its XSLT counterpart value-of, except that
it also allows special provisions for special FrameMaker element types.

FSLT_value-of processing
FSLT_value-of queries your source files based on the specified XPath, and for any element that
it matches, it copies the contents of it to the stylesheet. For “normal” elements, it does not copy the
matched element tag itself, and normally does not copy any descendant element tags. It does,
however, retain all subordinate content, essentially merging it all together as applicable. Because
of this functionality, FSLT_value-of is frequently used to extract content from a source file
without the element definition(s), for the purpose of retagging it once in the stylesheet.
FSLT_value-of can also match and retrieve values from attributes. If a matched attribute has
multiple values, only the first value is retrieved.

Chapter 5 Transformation Element Reference

FrameSLT 3.30 117

Tip: FSLT_value-of can also emit the value of a previously-defined parameter. For more
information, see “FSLT_value-of attributes” on page 117.

FSLT_value-of includes several options for handling special FrameMaker element types, which
is unique to FrameSLT. Certain element types, including graphics, cross-references, markers,
variables, and equations, are essentially “empty” element tags with the respective FrameMaker
object behind them. If their element tags were removed, they would likewise be removed from the
document. Therefore, on a case-by-case basis, you can select how to handle these element types,
either to preserve, remove, or in some cases, convert to text. These settings apply to the element
matched by the XPath, and any descendant elements. In XSLT, if a value-of element acted on
any of these special element types in their XML formats, you would always lose them during the
content retrieval process.

FSLT_value-of continues matching and extracting content until all XPath matches have been
exhausted. If your XPath matches multiple elements with paragraph content, your resulting
content in the stylesheet is likely to contain multiple paragraphs wrapped within a single element,
which is normally not recommended.

FSLT_value-of attributes

FSLT_value-of example
The following figure shows an FSLT_value-of element configured to match Heading elements
in Building Cabinets.fm:

Attribute Description

select XPath expression for the query. The contents of any element or
attribute matched will be copied to the stylesheet.

Note: You may also specify a parameter name, preceded by a
dollar sign ($). If the parameter is defined, the value is
copied to the stylesheet. If it is not defined, the string
<UNDEFINED PARAMETER> is printed instead and the
transformation continues. To be defined, a parameter must
be defined by an FSLT_param element previously in the
transformation process.

source_file Source file or book for the XPath query. For more information on
source files, see “Source file details” on page 80.

xref_action
marker_action
variable_action
equation_action
graphic_action

Individual settings for handling special FrameMaker element types
within any content copied over by FSLT_value-of. For more
information, see “FSLT_value-of processing” on page 116.

fslt_element Whether or not to preserve the FSLT_value-of element following
a transformation. For more information, see “About preserving
transformation elements after a transformation” on page 85.

starting_context The starting context for the XPath query, either as inherited, implied
by the XPath, or the transformation element itself. This option is only
available if the element is querying the “current” stylesheet or
document. For more information, see “About starting contexts” on
page 82.

Chapter 5 Transformation Element Reference

118 FrameSLT 3.30

This FSLT_value-of element is set to preserve all special element types within the retrieved
content. Therefore, if the matched Heading elements contain any markers, graphics, or other
special elements, they will be preserved in the final output with their original element definitions.

As an example, consider the following Heading element, with a SampleMarker marker element
as a child:

If the FSLT_value-of element in the previous figure matched this element, the following would
be the results:

Note how the content from the Heading element is placed where the FSLT_value-of element
used to be. The Heading element tag has been removed as normal, but the SampleMarker tag
and the associated marker has been preserved.

Chapter 5 Transformation Element Reference

FrameSLT 3.30 119

FSLT_when
The FSLT_when element is a required component of an FSLT_choose element structure. It
contains the XPath that performs the conditional evaluations and determines which content, if any
is added to the stylesheet.

FSLT_when supports basic parameter evaluation for the XPath, for example:
$MyParameter="ThisValue"

For any parameter evaluation that is more complex, such as with the use of functions, you should
start the XPath with a “to-self” axis, then put the evaluation into a predicate. For example:

.[contains("$MyParameter", "ThisValue")]

FSLT_when processing
See FSLT_choose.

FSLT_when attributes

FSLT_when example
See FSLT_choose.

Attribute Description

test XPath expression to test for a match. The contents of any element
or attribute matched will be copied to the stylesheet.

source_file Source file or book for the XPath query. For more information on
source files, see “Source file details” on page 80.

Chapter 5 Transformation Element Reference

120 FrameSLT 3.30

FrameSLT 3.30 121

Chapter 6
External Calls to FrameSLT

Like many FrameMaker plugins, you can make external calls to FrameSLT to invoke XPath related
functions, and use the results to perform customized actions within FrameMaker. Specifically, you
can call FrameSLT to:

• Parse an XPath expression and find applicable nodes

• Allocate and deallocate memory associated with parsed XPath expressions

The exposure of these functions through the FrameMaker API essentially transforms FrameSLT
into an XPath-based query engine that you can call for any nature of content management
functions feasible within FrameMaker. For example, you could:

• Create a customized system of text insets or other content reuse

• Create a custom plugin that performs structure alterations after an XML import, without having
to add complex code to an import/export client

• Create an automated system of assigning condition tags to elements based on attributes or
element names

One of the keys to content management is being able to locate the content in question. Because
XPath allows you to find very specific node instances, FrameSLT XPath opens the door to
powerful content management, limited only by your imagination and end goals.

How to send an external call to FrameSLT
To call FrameSLT, you can use one of three methods:

• With the FDK F_ApiCallClient() function, from another API client If you are working on
another FDK client, you can use F_ApiCallClient() to call FrameSLT. This function is part
of the normal FDK library and does not require any changes to your normal project settings.
For more information on the function itself, see the FDK Developer’s Reference provided by
Adobe with the FDK.

• With ExtendScript (FrameMaker 10 and later) The ExtendScript CallClient() function
behaves identically to an API call with F_ApiCallClient().

• With FrameScript FrameScript®, a scripting tool by Finite Matters, Ltd®, has a comparable
function for calling FDK clients, CallClient. When called from FrameScript, FrameSLT
behaves identically to a regular API call.

• With FrameAC FrameAC by Mekon® (www.mekon.com) is a plugin that enables developers
to use Visual Basic to control FrameMaker. FrameAC also provides the ability to script calls to
other API clients.

For any supported operation, you pass a string to FrameSLT which contains a command and any
applicable parameters, and FrameSLT sends back a numeric code indicating the results. The
syntax of these strings is the same for either API or scripting calls, and is explained in detail in this
document.

Tip: The call descriptions and examples in this document are written from an FDK/API
perspective, using F_ApiCallClient(). If you are using FrameScript or FrameAC, the
basic call syntax will be the same, sent using the mechanism supported by the respective
tool.

Chapter 6 External Calls to FrameSLT

122 FrameSLT 3.30

General information on external calls
Before you attempt to call FrameSLT, note the following:

• Calls and returns sometimes involve document and element IDs, instead of names. For
example, when call FrameSLT to find an element node with XPath, it will return the ID of the
element it finds. Therefore, to use external calls effectively, you must be familiar with element
and document IDs and how to convert them into the desired results.

• The default delimiter string between arguments in a call to FrameSLT is three dashes (---).
This delimiter can be changed with a ChangeCallDelimiter call.

• Due to the nature of F_ApiCallClient(), FrameSLT can only return a single integer after a
call. No strings or other values can be returned. Therefore, all returns are in integer format and
may represent items such as sequence numbers, element IDs, and error codes.

• Several calls to FrameSLT return zero (0) to indicate success, consistent with the behavior of
other FDK functions. However, F_ApiCallClient() also returns zero if it fails to communicate at
all with the specified API client. If you aren’t sure whether your calls are reaching FrameSLT,
you can call the special Hello command to verify that communications are getting through.

• With the exception of XPath expressions, call strings are generally not case-sensitive. For
example, to parse an XPath string, you can send any case variation of the ParseXPath
command name, such as PARSEXPATH or parsexpath.

Typical sequences of events
If you want to use XPath to navigate a document, you might:

 1 First call ParseXPath to parse the expression(s) and retrieve internal sequence number(s)

 2 Call FindNextNode to perform the navigation, sending it the sequence number you retrieved
from ParseXPath.

 3 After each XPath match (FindNextNode call), you could call RetrieveAttrMatch to
retrieve the index of the matched attribute, if your expression matches attributes.

 4 Once a query has exhausted all matches, you could reset the sequence with
ResetSequence and start the query again, perhaps with a different context node or
document.

If you want to run a Node Wizard script, you can simply call RunNWScript with the correct
parameters. No preliminary steps with FrameSLT are necessary, unless you want to preconfigure
one or more parameters with SetScriptParm.

If you want to transform a file, you can simply call TransformFile with the correct parameters.
No preliminary steps with FrameSLT are necessary.

Call reference
This section details the external calls you can make to FrameSLT.

AllocateNodeHandlers
Clears the space used to hold parsed XPath data.

Syntax
F_ApiCallClient("FrameSLT", "AllocateNodeHandlers");

Chapter 6 External Calls to FrameSLT

FrameSLT 3.30 123

Usage description
This call clears and allocates the memory space used to hold parsed XPath data. No deallocation
call is required beforehand. All parsed XPath data will be deleted, and any sequence numbers
retrieved by previous ParseXPath calls will be rendered invalid.

Note: In previous versions of FrameSLT, this call was required before you could parse XPath.
This is no longer true. All memory management is handled internally and you do not ever
need to call AllocateNodeHandlers. It is maintained in the current version for
general purpose and backwards compatibility only.

Returns
F_ApiCallClient() returns one of the following values after a AllocateNodeHandlers call:

ChangeCallDelimiter
Changes the delimiter for external call arguments. The default upon startup is three dashed
(“---”).

Syntax
F_ApiCallClient("FrameSLT", "ChangeCallDelimiterNewDelimiter");

Note: The new delimiter directly follows the ChangeCallDelimiter command. Do not
separate them with the old delimiter. Anything following the command will be considered
the new delimiter.

Returns
F_ApiCallClient() returns one of the following values:

ChangeCallDelimiter syntax example
F_ApiCallClient("InsetPlus", "ChangeCallDelimiter++++");

ClearScriptParms
Clears all parameter data currently in memory, whether set by a script or with SetScriptParm.

Value Meaning

0 Allocation was successful.

Note: 0 is also returned if a communication error occurs with FrameSLT. If you
suspect that the command didn’t work, consider calling Hello to verify that
FrameSLT is active.

1 General syntax error in call string.

2 Incorrect number of arguments sent with the command

Value Meaning

0 Delimiter successfully changed.

Note: 0 is also returned if a communication error occurs with FrameSLT. If you
suspect that the command didn’t work, consider calling Hello to verify
that FrameSLT is active.

1 Unrecognized command. Make sure you spelled “ChangeCallDelimiter”
correctly.

2 Incorrect number of arguments in the call string. Make sure you provided a new
delimiter after ChangeCallDelimiter.

Chapter 6 External Calls to FrameSLT

124 FrameSLT 3.30

Syntax
F_ApiCallClient("FrameSLT", "ClearScriptParms");

Returns
F_ApiCallClient() returns one of the following values after a ClearScriptParms call:

DeallocateNodeHandlers
Clears the space used to hold parsed XPath data. This call performs the same operation as
AllocateNodeHandlers.

Syntax
F_ApiCallClient("FrameSLT", "DeallocateNodeHandlers");

Usage description
This call clears and allocates the memory space used to hold parsed XPath data. No allocation call
is required beforehand. All parsed XPath data will be deleted, and any sequence numbers
retrieved by previous ParseXPath calls will be rendered invalid.

Note: In previous versions of FrameSLT, this call was recommended for cleanup following
XPath usage, because memory handling required more management steps. This is no
longer true. All memory management is handled internally and you do not ever need to
call DeallocateNodeHandlers. It is maintained in the current version for general
purpose and backwards compatibility only.

Returns
F_ApiCallClient() returns one of the following values after a DeallocateNodeHandlers
call:

FindNextNode
Finds element nodes based on parsed XPath data, using a sequence number returned by
ParseXPath.

Syntax
F_ApiCallClient("FrameSLT",

 "FindNextNode---SeqNumber---Document---ContextElemId---Flow");

Value Meaning

0 Call was successful.

Note: 0 is also returned if a communication error occurs with FrameSLT. If you
suspect that the command didn’t work, consider calling Hello to verify that
FrameSLT is active.

1 General syntax error in call string.

Value Meaning

0 Deallocation was successful.

Note: 0 is also returned if a communication error occurs with FrameSLT. If you
suspect that the command didn’t work, consider calling Hello to verify that
FrameSLT is active.

1 General syntax error in call string.

Chapter 6 External Calls to FrameSLT

FrameSLT 3.30 125

where:

Usage description
FindNextNode uses parsed XPath data to find an element or attribute node, within a
FrameMaker document you specify. The parsed XPath is identified by a sequence number
returned by ParseXPath, so you must call ParseXPath to parse the XPath expression before
you can use FindNextNode.

FindNextNode requires you to send the ID of a context element, which indicates the starting
point for the query. XPath works in a sequential fashion, beginning at some established place
within the structure tree and matching nodes until it runs out of matches. The matching is always
based on some evaluation of context, which is true even for the first match.

If your XPath expression begins with a forward slash (that is, a go-to-root axis), the context
element ID sent is actually ignored, because the first axis forces the context to the root. For
example, with the following expression:

//Body

...the first axis will force the query to begin at the structural root, after which it will match any Body
elements that are descendants of the highest-level element. With an expression such as this, the
context element ID is irrelevant, and you can simply send a zero (0).

Conversely, if the XPath does not force the query to start at the root, you must send a context
element ID that represents the starting point. For example, the following expression:

Body

...will match any Body elements that are children of the starting context element, whatever that
may be. Therefore, this type of expression requires you to send the ID of that element from which
the query should begin.

Note: Even when required, the context element ID is only used for the first match, because all
subsequent matches either remember the original context or use a new context as
established by the query itself. However, you should send the original context element ID

SeqNumber Sequence number returned by ParseXPath, representing the
desired parsed XPath expression.

Document One of the following:

• A document object handle in integer form (integer form of the
FDK F_ObjHandleT type)

• A fully-qualified path name of an open document

In either case, the document to be queried must be currently open.

ContextElemId The object handle of the context element, in integer form (integer
form of the FDK F_ObjHandleT type). For more information on this
parameter, see “Usage description” on page 125.

Flow One of the following:

• A flow object handle in integer form (integer form of the FDK
F_ObjHandleT type)

• A flow name, case-sensitive

To indicate the main flow, you may also send “0” or “Main”. If this
argument is not sent at all, FrameSLT will assume the main flow.

Note: The flow ID/name is only required if you send zero (0) for
the ContextElemId. If you send a valid context element
ID, you may send zero for the flow, or omit the argument
entirely. For more information, see “Usage description” on
page 125.

Chapter 6 External Calls to FrameSLT

126 FrameSLT 3.30

with each FindNextNode call, otherwise FrameSLT may assume an error has occurred
and return zero. This is true even if you sent originally sent a zero (0). If so, all
subsequent FindNextNode should send zero as well.

You can call FindNextNode on any currently-parsed XPath expression, provided that you have a
valid sequence number. Each sequence keeps track of its own query, and will always pick up
where it left off with each subsequent FindNextNode call. You do not need to perform any steps
to manage individual XPath queries, other than to simply call FindNextNode.

As mentioned earlier, each XPath query begins at some established starting point and matches
nodes until there are none left to match. At the end or at any point in between, you can call
ResetSequence to clear the internal sequence and start the query anew. After a
ResetSequence call, you can send a new context element ID with FindNextNode, as applicable
to the respective XPath expression.

Tip: A repeat call of ParseXPath on an already-parsed expression will also reset the respective
sequence.

The flow name/ID is only required if you do not send a context element ID. If you do send a context
element ID, the flow to query will be derived from that element, and you should simply send zero
for the flow. Conversely, if you send zero for the context element ID, a flow ID or name is required
such that FrameSLT knows which structure tree to query. Keep in mind that any FrameMaker
document flow can be structured, and FrameSLT supports XPath queries on any structured flow.

Returns
F_ApiCallClient() returns one of the following values after a FindNextNode call:

Value Meaning

0 No nodes found. When zero is returned, the sequence has been exhausted and all
nodes have been located by previous FindNextNode calls. To start the sequence
over, you can call ResetSequence. Without resetting the sequence,
FindNextNode will return zero for any future calls.

Note: 0 is also returned if a communication error occurs with FrameSLT. If you
suspect that the command didn’t work, consider calling Hello to verify
that FrameSLT is active.

1 General syntax error in call string

2 Incorrect number of arguments sent with the command

4 Bad sequence number. Check to make sure you have sent the sequence number
returned by ParseXPath.

6 Bad document argument. An invalid document ID or filename was sent. Make sure
the argument represents the ID or filename of a valid, open document.

Chapter 6 External Calls to FrameSLT

FrameSLT 3.30 127

Syntax examples
F_ApiCallClient("FrameSLT",

 "FindNextNode---21---67108880---0”);

F_ApiCallClient("FrameSLT",

 "FindNextNode---21---67108880---0---503586820");

F_ApiCallClient("FrameSLT",

 "FindNextNode---21---C:\MyDocs\Myfile.fm---0---Main");

Code sample
The following example shows the basic syntax of an actual FindNextNode call.

Note: Because the parsed XPath expression begins with a “go-to-root” axis, the context
element is not important. Otherwise, you would need to have that ID as well.

. . .

F_ObjHandleT docId, elemId;

UCharT arg[50];

UIntT sequenceNumber;

IntT returnVal;

. . .

/* Parse the XPath */

sequenceNumber =

 F_ApiCallClient("FrameSLT", "ParseXPath---//Section/Body[1]---True");

7 Bad flow argument. An invalid flow name or ID was sent.

Any
integer
greater
than 100

An integer form of a matched element ID. The ID may be in one of two formats,
according to a parameter set with SetAppParm:

• An integer form of an F_ObjHandleT object handle (default). When calling
FrameSLT from another FDK client, this type of ID is normally the most
convenient, as it can be readily cast back to a valid object handle.

• An element unique ID (FP_Unique) property. When calling FrameSLT from
ExtendScript, this type of ID is normally the most convenient, as it is
cumbersome to convert an FDK F_ObjHandleT ID into an ES object. With a
unique ID, you can use the GetUniqueObject() method to convert to an ES
object, for example:

var doc = app.ActiveDoc;

var seqnum = CallClient("FrameSLT", "ParseXPath---//
Body---False");

CallClient("FrameSLT" , "SetAppParm---EC_ReturnIDType---UID");

var id = CallClient("FrameSLT" , "FindNextNode---" + seqnum +
"---" + doc.id + "---0---Main");

var elem = doc.GetUniqueObject(Constants.FO_Element, id);

alert(elem.ElementDef.Name);

Note: If your XPath expression matches attribute nodes instead of element
nodes, the return will still be an element ID, representing the ID of the
parent element. If you would like to retrieve the index of the matched
attribute nodes, you can call RetrieveAttrMatch after
FindNextNode.

Value Meaning

Chapter 6 External Calls to FrameSLT

128 FrameSLT 3.30

/* Get a document ID */

docId = F_ApiGetId(0, FV_SessionId, FP_ActiveDoc);

/* Form the argument for the FindNextNode call */

F_Sprintf(arg, "FindNextNode---%d---%d---0---Main", sequenceNumber, docId);

/* Call FrameSLT to find the next node */

returnVal = F_ApiCallClient("FrameSLT", (StringT)arg);

/* Convert the returned integer ID back to an object handle */

elemId = (F_ObjHandleT)returnVal;

/* Report */

if(elemId > 20)

 F_ApiAlert("Found an element.", FF_ALERT_CONTINUE_WARN);

else if(elemId > 0)

 F_ApiAlert("An error occurred.", FF_ALERT_CONTINUE_WARN);

else

 F_ApiAlert("Nothing found. Sequence is spent.", FF_ALERT_CONTINUE_WARN);

GetAppParm
Retrieves a general application parameter.

Syntax
F_ApiCallClient("FrameSLT", "GetAppParm---Name")

...where the following table describes valid parameter names:

Returns
F_ApiCallClient() returns one of the following values after a SetScriptParm call:

Name Description

EC_NWScriptsDoc Retrieves the F_ObjHandleT object ID of the
currently-active Node Wizard Scripts document.

EC_FrameSLTVersionMajor Retrieves the major version number of the plugin; for
example, the “3” in v3.17. The value returned is actually
the version number plus 100, so you should subtract 100
from the result to get the actual version number.

EC_FrameSLTVersionMinor Retrieves the minor version number of the plugin; for
example, the “17” in v3.17. The value returned is actually
the version number plus 100, so you should subtract 100
from the result to get the actual version number.

Value Meaning

0 Operation was successful.

Note: 0 is also returned if a communication error occurs with
FrameSLT. If you suspect that the command didn’t work,
consider calling Hello to verify that FrameSLT is active.

1 General syntax error in call string.

Chapter 6 External Calls to FrameSLT

FrameSLT 3.30 129

Syntax example
returnVal =

 F_ApiCallClient("FrameSLT", "GetAppParm---EC_FrameSLTVersionMajor");

GetScriptParmByte
Gets an integer value representing a byte of currently-defined Node Wizard Script parameter
value. It is intended as a means for retrieving a parameter value currently in memory, using a
byte-by-byte retrieval and reconstruction methodology.

Note: If you are using ExtendScript, you may consider using an external object instead, which
can return a string directly. The reconstruction of a string byte-by-byte can be difficult in a
script, especially if multibyte characters are included. For more information, see “Using
FrameSLT as an ExtendScript external object” on page 149.

Syntax
F_ApiCallClient("FrameSLT", "GetScriptParmByte---Name")

where:

Usage description
GetScriptParmByte is provided to retrieve the value of a currently-defined script parameter,
using a byte-by-byte methodology that can be used iteratively to reconstruct a string. The
byte-by-byte method is required to overcome the F_ApiCallClient() limitation of returning a
single integer only.

To allow for error-related returns in the lower integers, all byte values are returned plus 100.
Therefore, you should subtract 100 from every byte value returned before adding it to your result
string.

The first call to a given parameter retrieves the first byte, the second retrieves the second, and so
forth. When the end of the string is reached, the call returns 100 (0) one time, then subsequent
calls will resume at the beginning of the string. Note the following:

• You can use this call to retrieve the value of any parameter after a script run, whether the
parameter was set by the script or previously with SetScriptParm.

• You should always iterate over the value of a single parameter entirely before attempting to
retrieve the value of a second. If you attempt to retrieve bytes from a second parameter before
completing the first, the results will be unpredictable.

• Because this methodology uses bytes and not code points, it is straightforward to reconstruct
strings with any character encoding.

2 Incorrect number of arguments sent with the command.

5 No active Node Wizard Scripts document is set or the active document is
not currently open.

20 Invalid parameter name.

Any other value
over 100

The requested parameter value.

Value Meaning

Name Parameter name. The preceding dollar sign ($) sometimes used for
parameter notation is not required.

Chapter 6 External Calls to FrameSLT

130 FrameSLT 3.30

Returns
F_ApiCallClient() returns one of the following values after a GetScriptParmByte call:

Syntax example
The following sample retrieves the value of the parameter “MyParameter” and produces a
message box containing it.

UCharT buf[2056];

IntT returnVal, index = 0;

returnVal =

 F_ApiCallClient("FrameSLT", "GetScriptParmByte---MyParameter");

while(returnVal > 100)

{

 buf[index++] = returnVal - 100;

 returnVal =

 F_ApiCallClient("FrameSLT", "GetScriptParmByte---MyParameter");

}

if(returnVal < 100)

 F_Sprintf(buf, "ERROR! The following error code was returned: %d",

 returnVal);

else buf[index] = 0;

F_ApiAlert((StringT)buf, FF_ALERT_CONTINUE_WARN);

Hello
Determines if FrameSLT is initialized and receiving external calls.

Syntax
F_ApiCallClient("FrameSLT", "Hello");

Usage description
Hello is a simple call to ensure that FrameSLT is available and responding to external calls.

Value Meaning

0 A communication error occurred. Consider calling Hello to ensure
connectivity with FrameSLT.

1 General syntax error in call string.

2 Incorrect number of arguments sent with the command

20 Invalid parameter name; that is, the parameter is not currently defined.

100 The end of the value string was reached.

A value
between 101
and 355

A byte value plus 100.

Chapter 6 External Calls to FrameSLT

FrameSLT 3.30 131

Returns
F_ApiCallClient() returns one of the following values after a Hello call:

Syntax example
. . .

IntT returnVal;

. . .

returnVal = F_ApiCallClient("FrameSLT", "Hello");

if(returnVal < 17)

 F_ApiAlert("Error. FrameSLT is not ready.", FF_ALERT_CONTINUE_WARN);

ParseXPath
Parses an XPath expression, returning an internal sequence number for node queries.

Syntax
F_ApiCallClient("FrameSLT", "ParseXPath---Expression---ReportErrors")

where:

Usage description
ParseXPath parses an XPath expression, and if successful, returns an internal sequence
number that you will need for FindNextNode node queries. You can call ParseXPath for
multiple expressions, and provided that you store the sequence numbers, you can perform
independent queries based on any of them afterwards. In other words, subsequent ParseXPath
calls start new internal sequences and do not delete any previously parsed data.

The returned sequence number is how FrameSLT identifies a parsed XPath expression and is a
required argument for FindNextNode calls. Each unique expression that is parsed will return a
unique sequence number. All parsed data will remain in memory unless cleared with an
AllocateNodeHandlers. Normally, memory constraints should not be a concern, unless you
are parsing an excessive amount of expressions such as a few hundred or more. In this case, you
may consider periodic calls to AllocateNodeHandlers to free up some memory. Note,

Value Meaning

0 Communication with FrameSLT failed. Make sure that FrameSLT is initialized and
running. Also, make sure that FrameSLT is properly registered in the maker.ini
file under the name “FrameSLT.”

16 An evaluation copy of FrameSLT is installed, but the license is expired. External
calls will not work.

17 Deprecated. This used to be the return for FrameSLT Lite, which no longer exists as
of version 2.2.

18 FrameSLT installed and ready.

Expression XPath expression to parse.

ReportErrors Indicates whether to report parsing errors or not, either True or
False. If you specify True, FrameSLT will produce the standard
error report if a parsing error is encountered. Otherwise, the return
value will indicate if a parsing error occurs, but you will not know the
nature of the error.

Chapter 6 External Calls to FrameSLT

132 FrameSLT 3.30

however, that an AllocateNodeHandlers call will delete all currently-parsed data and render
any previously-retrieved sequence numbers invalid.

Note: All statements made thus far about parsed XPath data remaining in memory assume
that you have your memory constraints set to a reasonable capacity. For more
information on setting memory constraints, see “Preferences” on page 10.

Returns
F_ApiCallClient() returns one of the following values after a ParseXPath call:

Syntax example
sequenceNumber =

 F_ApiCallClient("FrameSLT", "ParseXPath---//Section/Body[1]---True");

ResetSequence
Resets a parsed, internal XPath sequence for reuse.

Syntax
F_ApiCallClient("FrameSLT", "ResetSequence---SequenceNumber");

where:

Usage description
ResetSequence resets an internal XPath sequence such that it can be used for a new query.
Once ResetSequence is called, you can begin a new query, using a different context node if
desired. For more information on sequence behavior and context nodes, see “FindNextNode” on
page 124.

As an example, consider the following XPath expression:
//Body

After this expression is parsed, the first FindNextNode call will find the first Body element in the
document. The next call finds the next Body element, and so on. When you reset the sequence,
however, FindNextNode begins again at the root, finding the first Body element again.

The concept of resetting a sequence is necessary because an XPath query works in a sequential,
contextual manner, which has a definitive starting and ending point. Once FindNextNode has
exhausted a sequence and reached the end, the only logical way to use the sequence again is to
reset it entirely and resume the query at some specified starting context. If you run a subsequent
FindNextNode pattern on the same XPath expression, same original structure, and same
context, it will always find the same nodes as the previous run.

Value Meaning

0 Communication error with FrameSLT.

1 General syntax error in call string.

2 Incorrect number of arguments sent with the command

3 The XPath contains an error and could not be parsed. To find out the nature of the
error, set ReportErrors to True to produce the error report.

Any other
number
over 100

A sequence number indicating that the parse was successful. This sequence
number becomes an internal identifier for the parsed expression will be necessary
to perform queries using FindNextNode.

SequenceNumber Valid sequence number for a previously-parsed XPath expression, as
returned by a ParseXPath call.

Chapter 6 External Calls to FrameSLT

FrameSLT 3.30 133

Returns
F_ApiCallClient() returns one of the following values after a ResetSequence call:

RetrieveAttrMatch
Retrieves the index (+100) of an attribute as matched by an XPath expression, following a
FindNextNode call.

Syntax
F_ApiCallClient("FrameSLT", "RetrieveAttrMatch---SequenceNumber");

Usage description
Note: The index returned by RetrieveAttrMatch is actually the index plus 100, in order to

reserve the lower return numbers for error reporting. For any value returned by
RetrieveAttrMatch, you should subtract 100 from it before using it as an index.

RetrieveAttrMatch retrieves the index of the attribute matched by the most recent call to
FindNextNode. This call is provided for XPath expressions that match attribute nodes, because
FindNextNode returns element IDs only. If the respective XPath expression does not match
attribute nodes, this call will return 99, corresponding to an actual index of -1.

As an example, consider the following expression:
//Body/@AttributeA

This expression matches attribute nodes, not element nodes. Specifically, it matches attribute
nodes named “AttributeA” on Body elements. For each match, though, FindNextNode will return
the ID of the parent Body element only. Therefore, RetrieveAttrMatch allows you to retrieve
the index of the matched attribute as well. It must be called before the next FindNextNode,
because each FindNextNode call resets the value to the most recent match.

The index retrieved by RetrieveAttrMatch corresponds to the attribute index (+100) of the
attribute as if it were stored in an F_AttributesT array, as if retrieved by F_ApiGetAttributes() on the
element returned by FindNextNode.

Returns
F_ApiCallClient() returns one of the following values after a RetrieveAttrMatch call:

Value Meaning

0 Reset was successful.

Note: 0 is also returned if a communication error occurs with FrameSLT. If you
suspect that the command didn’t work, consider calling Hello to verify
that FrameSLT is active.

1 General syntax error in call string

2 Incorrect number of arguments sent with the command

4 Bad sequence number. Check to make sure you have sent the sequence number
returned by ParseXPath.

Value Meaning

0 Communication error with FrameSLT

1 General syntax error in call string

2 Incorrect number of arguments sent with the command

Chapter 6 External Calls to FrameSLT

134 FrameSLT 3.30

Code sample
The following code sample performs an XPath query and reports the values of the matched
attribute(s):

. . .

IntT sequenceNum,

 index;

F_ObjHandleT elemId,

 docId;

F_AttributesT attrs;

UCharT fnnCall[64],

 ramCall[64];

. . .

/* Get the ID of the active document */

docId = F_ApiGetId(0, FV_SessionId, FP_ActiveDoc);

/* Parse the XPath expression, which will match all attributes */

/* of all Body elements */

sequenceNum =

 F_ApiCallClient("FrameSLT", "ParseXPath---//Body/@*---True");

/* Form the call strings we are going to send to FrameSLT to */

/* navigate with the XPath and retrieve the index of matched attributes */

F_Sprintf(fnnCall, "FindNextNode---%d---%d---0---0", sequenceNum, docId);

F_Sprintf(ramCall, "RetrieveAttrMatch---%d", sequenceNum);

/* Get the element ID of the first match of the xpath */

elemId = (F_ObjHandleT)F_ApiCallClient("FrameSLT", (StringT)fnnCall);

/* Run this loop for each match of the XPath */

while(elemId)

{

 /* Get the index of the matched attribute from the previous query */

 index = F_ApiCallClient("FrameSLT", (StringT)ramCall);

 /* Get the attributes from the parent element of the matched */

 /* attribute, within which we will be able to find the matched */

 /* attribute according to the index */

 attrs = F_ApiGetAttributes(docId, elemId);

4 Bad sequence number. Check to make sure you have sent the sequence
number returned by ParseXPath.

Any number
over 98

The attribute index, plus 100. For example, if the call returns 101, the actual
index is 1. If the call returns 99, the actual index is -1, meaning that there
actually is no index. 99 (1-) should only be returned if the XPath expression
matches elements instead of attributes.

Value Meaning

Chapter 6 External Calls to FrameSLT

FrameSLT 3.30 135

 /* If the attribute has any values, report the first one */

 /* Remember that the returned index is the actual index plus 100 */

 if(index > 99 &&

 attrs.val[index - 100].values.len > 0)

 F_ApiAlert(attrs.val[index - 100].values.val[0],

 FF_ALERT_CONTINUE_WARN);

 else

 F_ApiAlert("<no value>", FF_ALERT_CONTINUE_WARN);

 /* Clear the F_AttributesT array */

 F_ApiDeallocateAttributes(&attrs);

 /* Get the next XPath match */

 elemId = (F_ObjHandleT)F_ApiCallClient("FrameSLT", (StringT)fnnCall);

}

RetrieveFileMatch
Retrieves the object handle ID (F_ObjHandleT) of the file that contains the matched node,
following a FindNextNode call. This call is only applicable for XPath queries that traverse
different books and/or documents using special axes such as fmbook::. If a query never leaves
the original file, this call will always return the ID of that file. Note that this file may be a book or a
document, depending upon the nature of the query.

Syntax
F_ApiCallClient("FrameSLT", "RetrieveFileMatch---SequenceNumber");

Returns
F_ApiCallClient() returns one of the following values after a RetrieveAttrMatch call:

RunNWScript
Runs a Node Wizard script or script event.

Syntax
F_ApiCallClient("FrameSLT",

 "RunNWScript---ScriptName---EventNumber---File---DoReporting")

Value Meaning

0 Communication error with FrameSLT

1 General syntax error in call string

2 Incorrect number of arguments sent with the command

4 Bad sequence number. Check to make sure you have sent the sequence
number returned by ParseXPath.

Any number
over 100

The file ID.

Chapter 6 External Calls to FrameSLT

136 FrameSLT 3.30

where:

Usage description
RunNWScript runs a Node Wizard script that you have already defined in the scripts settings file.
The results should be identical to those as if the script were run with the scripts dialog at
FrameSLT > Node Wizard Scripts. For more information on writing and managing Node Wizard
scripts, see “Node Wizard scripts” on page 45.

Tip: FrameSLT will determine whether the file to be acted upon is a book or document, and
adjust processing accordingly. If you are processing a book and one or more components
are not currently open, they will be skipped by the script. If you have the DoReporting flag
set to True, you will be prompted first, otherwise the script will simply proceed on any
components that are open.

Returns
F_ApiCallClient() returns one of the following values after a RunNWScript call:

ScriptName Valid, case-sensitive name of a defined Node Wizard script. Spaces
in script names are permitted.

EventNumber Specific event to run, within the script. Within a script, individual
events are numbered sequentially, starting at 1. If you want to run the
whole script, specify zero (0).

File File on which the script should run, as one of the following:

• A document or book object handle in integer form (integer form of
the FDK F_ObjHandleT type)

• A fully-qualified path name of an open document or book

In either case, the file must be currently open.

DoReporting Indicates whether reporting activities should occur, either True or
False. Reporting activities include message boxes that report script
errors and run statistics. If you specify False, no message boxes or
reports should appear at all, whether or not the script runs
successfully.

Value Meaning

0 Script ran successfully.

Note: The failure of individual events and element/attribute actions does not
return a script failure. Therefore, a return of zero does not necessarily
indicate that the script performed the actions you intended. It merely
indicates that the script was found in the settings file and that no critical
errors occurred during the script run process.

1 General syntax error in call string.

2 Incorrect number of arguments sent with the command

6 Bad file argument. An invalid document or book ID or filename was sent. Make sure
the argument represents the ID or filename of a valid, open document or book.

Chapter 6 External Calls to FrameSLT

FrameSLT 3.30 137

Syntax example
returnVal = F_ApiCallClient("FrameSLT",

 "RunNWScript---MyScript---0---67108880---True");

Code sample
The following sample runs a script named “MyScript” on all components of the active, book, if a
book is active and all components are open:

. . .

F_ObjHandleT bookId;

IntT returnVal;

UCharT buf[64];

. . .

/* Get the ID of the active book, on which we will run the script */

bookId = F_ApiGetId(0, FV_SessionId, FP_ActiveBook);

if(bookId)

{

 /* Form the argument to sent to FrameSLT. We will be running */

 /* a script named "MyScript". */

 F_Sprintf(buf, "RunNWScript---MyScript---0---%d---False", bookId);

 /* Call FrameSLT to run the script */

 returnVal = F_ApiCallClient("FrameSLT", (StringT)buf);

 /* Report how things went */

 if(returnVal == 0)

 F_ApiAlert("Script ran OK.", FF_ALERT_CONTINUE_WARN);

 else

 F_ApiAlert("An error occurred.", FF_ALERT_CONTINUE_WARN);

}

SetAppParm
Sets a general application parameter.

Syntax
F_ApiCallClient("FrameSLT", "SetAppParm---Name---Value")

8 Bad script name. Make sure the script name sent represents a script defined in the
script settings file. Note that script names are case-sensitive.

9 The script failed to complete for an unknown reason. Possibilities include:

• The script is marked as “inactive” in the scripts settings file.

• The script run was cancelled in-progress by the user (perhaps you).

Value Meaning

Chapter 6 External Calls to FrameSLT

138 FrameSLT 3.30

...where the following table describes valid parameter names and values:

Returns
F_ApiCallClient() returns one of the following values after a SetAppParm call:

Syntax example
returnVal =

 F_ApiCallClient("FrameSLT", "SetAppParm---EC_ReturnIDType---UID");

Name Description Options for Value

EC_NWScriptsDoc Sets the currently-active
Node Wizard Scripts
document.

• A fully-qualified path, using forward or
backslashes. If the file is not open,
FrameSLT will open a hidden copy
and allow access to the scripts within,
much like the Node Wizard Scripts
dialog box when the scripts document
is not open

• A filename. The document must be
currently open.

• An F_ObjHandleT document ID. The
document must be open.

Note that in all cases, this argument is not
case-sensitive.

EC_ReturnIDType Specifies the type of
element ID returned by a
FindNextNode call.

• FDK - An integer form of an FDK
F_ObjHandleT handle. When calling
FrameSLT from another API client,
this form is normally the most
convenient.

• UID - An element unique ID
(FP_Unique property). When calling
FrameSLT from ExtendScript, it is
normally much easier to convert this
type of ID to an ES object by using the
GetUniqueObject() document
method.

Value Meaning

0 Operation was successful.

Note: 0 is also returned if a communication error occurs with FrameSLT. If you
suspect that the command didn’t work, consider calling Hello to verify
that FrameSLT is active.

1 General syntax error in call string.

2 Incorrect number of arguments sent with the command.

5 The specified Node Wizard Scripts document could not located, likely due to an
invalid path or document ID. Check the syntax of the command.

20 Invalid parameter name.

Chapter 6 External Calls to FrameSLT

FrameSLT 3.30 139

SetParam
Note: This command was originally implemented to handle parameter usage during

transformation activities, which are scheduled for deprecation. If you want to set a
parameter for a Node Wizard Script, see SetScriptParm.

Sets a parameter value for use during transformation or deletes all current parameter values.

Syntax
F_ApiCallClient("FrameSLT", "SetParam---Name---[Value]")

where:

Usage description
SetParam allows you to define a parameter before performing a transformation. It has some
similarity with comparable XSLT processes where a parameter is passed to a stylesheet before
transformation, with the following important differences:

• A defined parameter is not specific to any stylesheet. Any parameters that are defined will
apply to any subsequent transformation action with TransformFile.

• All parameter definitions remain in memory until cleared with this command or a manual
transformation is run (through the FrameSLT menu). These parameter definitions are not used
for manual transformations and will be cleared out by a manual action.

• Setting a parameter to an empty string does not delete its definition; rather, it simply defines it
as an empty string.

• Similar (in some respects) to XSLT, this command will override any FSLT_param elements in
the stylesheet(s) that define the same parameter. In other words, an FSLT_param element will
be ignored during an external-call transformation if previously-defined with this command.
Unlike XSLT, however, a stylesheet does not need to contain a matching FSLT_param
element at all if the parameter is defined by this command and transformed with
TransformFile.

For more information on parameter usage in stylesheets, see:

• “About parameters in XPath expressions” on page 85

• “Use of parameters in source file paths” on page 81

• FSLT_value-of

Returns
F_ApiCallClient() returns one of the following values after a SetParam call:

Name Parameter name, or delete_all to clear all currently-defined
parameters. The preceding dollar sign ($) used when a parameter is
referenced in a stylesheet is not required.

Value (Optional) Parameter value. This must be a static string, not an XPath
expression as supported by FSLT_param elements. If omitted, an
empty string is assumed.

Value Meaning

0 Operation was successful.

Note: 0 is also returned if a communication error occurs with FrameSLT. If you
suspect that the command didn’t work, consider calling Hello to verify
that FrameSLT is active.

Chapter 6 External Calls to FrameSLT

140 FrameSLT 3.30

Syntax examples
returnVal =

 F_ApiCallClient("FrameSLT", "SetParam---MyParameter---SomeValue");

returnVal =

 F_ApiCallClient("FrameSLT", "SetParam---delete_all");

SetScriptParm
Sets a parameter value for use during a Node Wizard script.

Note: If you are using ExtendScript, you can also set a parameter using an external object. For
more information, see “Using FrameSLT as an ExtendScript external object” on
page 149.

Syntax
F_ApiCallClient("FrameSLT", "SetScriptParm---Name---Value")

where:

Usage description
SetScriptParm sets a parameter for use by Node Wizards Scripts, much like a
Set_parameter action within a script. Its usage is otherwise intuitive, noting that:

• When you set a parameter with this call, it persists in memory until a script changes it or you
call ClearScriptParms. Unlike a parameter set by a script, a parameter set with this call
does not get cleared when a new script is launched.

• Once set, a parameter is available for any script.

Returns
F_ApiCallClient() returns one of the following values after a SetScriptParm call:

Syntax example
returnVal =

 F_ApiCallClient("FrameSLT", "SetScriptParm---MyParameter---SomeValue");

1 General syntax error in call string.

2 Incorrect number of arguments sent with the command

Value Meaning

Name Parameter name. The preceding dollar sign ($) sometimes used for
parameter notation is not required.

Value Value to set. This may be any string, including an empty string.

Value Meaning

0 Operation was successful.

Note: 0 is also returned if a communication error occurs with FrameSLT. If you
suspect that the command didn’t work, consider calling Hello to verify
that FrameSLT is active.

1 General syntax error in call string.

2 Incorrect number of arguments sent with the command

Chapter 6 External Calls to FrameSLT

FrameSLT 3.30 141

TransformFile
Transforms a book or document, based on a file name or object ID sent with the command.

Syntax
F_ApiCallClient("FrameSLT",

 "TransformFile---StylesheetFile---DupeDocPath---ReportErrors");

where:

Usage description
TransformFile performs a full transformation of the specified book or document. The stylesheet
file(s) for transformation must be currently open, because this command will not open any
stylesheets. It may open source files to retrieve content, but only if your FrameSLT preferences
are set up to allow this. For more information, see “Preferences” on page 10.

TransformFile allows you to specify a target file path, if you wish to duplicate the file prior to
transformation. The actual syntax of the path is only relevant for book transformations, because
duplicate document transformations always create a duplicate in the same folder and apply the
filename addendum specified in your preferences. If you want to duplicate a single document,
simply specify any string other than NULL. For either a document a book, specification of NULL will
cause the transformation to occur on the source document.

If the transformation is successful, this call returns an integer form of the transformed document or
book ID. In the case of a duplicate document transformation, this will be the ID of the new,
duplicated document and will be different than the ID you sent in the original call. For book
transformations, the ID should be the same, but keep in mind that if you duplicated the book, it is
not the same book you started with. It is your responsibility to handle that document or book
afterwards. This command does not open, save, or close any files, except for source files opened
by the transformation itself, as applicable.

Tip: Before transformation, you can define parameter values with SetParam, applicable if your
stylesheets use parameters.

StylesheetFile Stylesheet file or book of files to be transformed, as one of the
following:

• A document or book object handle in integer form (integer form of
the FDK F_ObjHandleT type)

• A fully-qualified path name of an open document or book

In either case, the file must be currently open.

DupeDocPath The fully-qualified path for the duplicated, transformed file, applicable
only for transforming books. Only books are directed to a new folder
during a “duplicate file” transform. To indicate a duplicate file transform
on a single document, specify DUPE. A duplicate file will be created,
but not saved to a new folder.

For books and documents, to indicate a “source file” transform, specify
NULL. Note that a source file transform operates directly on your
source files and should be performed with caution.

ReportErrors Indicates whether to report errors or not, either True or False. If you
specify True, FrameSLT will produce the standard error report if
errors are encountered. If you specify False, the return value will
indicate if an error occurs, but you may not know the nature of the
error.

Chapter 6 External Calls to FrameSLT

142 FrameSLT 3.30

Returns
F_ApiCallClient() returns one of the following values after a TransformFile call:

TransformFile syntax examples
TransformFile calls are syntactically challenging because of the potential presence of file
paths, which contain backslashes. In a string in C, backslashes must be sent as an escape

Value Meaning

0 Communication error with FrameSLT

1 General syntax error in call string

2 Incorrect number of arguments sent with the command

6 Bad stylesheet file argument. An invalid document or book ID or filename was sent.
Make sure the argument represents the ID or filename of a valid, open document or
book.

11 Could not duplicate the document. You have attempted to transform a document by
making a duplicate first, but the duplication process failed. This may occur for any
number of reasons, so you may consider working with the file manually to see if it
has any overt problems. If the original stylesheet document has unsaved changes,
FrameSLT attempted to save it before duplication, so the problem may have
occurred at that point due to server, network, or permission errors.

12 Could not find structure in the stylesheet document. FrameSLT was unable to find
any structure in the main flow of the document, so no transformation actually took
place.

13 Pre-processing of the stylesheet document failed. Before transformation,
FrameSLT performs a variety of preprocessing activities on the stylesheet, such as
parsing XPath expressions and validating transformation element setups. Any
single failure can cause the process to abort.

You can learn the specific nature of these errors by setting ReportErrors to
True, allowing FrameSLT to generate its error report.

14 General transformation error. FrameSLT encountered an unrecoverable error
during the transformation of a stylesheet document, and aborted the transformation.
You can learn the specific nature of these errors by setting ReportErrors to
True, allowing FrameSLT to generate its error report.

15 Error during book preparation. FrameSLT performs a set of preliminary steps to
prepare a book before the actual transformation begins. An error during this
process is usually unrecoverable and causes the transformation to abort. You can
learn the specific nature of these errors by setting ReportErrors to True,
allowing FrameSLT to generate its error report.

Note: If you are attempting to transform a book, and you have provided a folder
path for duplication of the book, a single mistake in the path will cause this
error. Make absolutely sure that the path for the new book is exactly
correct. For more information on specifying this path, see
“TransformFile syntax examples” on page 142.

Any
number
greater
than 15

An integer form of the transformed document or book ID. If you transformed a
source file, this ID should be the same as the ID you sent with TransformFile. A
returned ID generally indicates that the transformation was successful.

Chapter 6 External Calls to FrameSLT

FrameSLT 3.30 143

sequence, represented by a double backslash (\\). For example, the following are some
examples of TransformFile calls:

//Document transform by ID, source file

F_ApiCallClient("FrameSLT",

 "TransformFile---1842312---NULL---True");

//Document transform by ID, duplicate doc

F_ApiCallClient("FrameSLT",

 "TransformFile---1842312--Dupe---True");

//Document transform by file name, source file

F_ApiCallClient("FrameSLT",

 "TransformFile---C:\\MyDocs\\Stylesheet.fm---NULL---True");

//Book transform by ID, source file

F_ApiCallClient("FrameSLT",

 "TransformFile---3425343---NULL---True");

//Book transform by ID, duplicate book

F_ApiCallClient("FrameSLT",

 "TransformFile---3425343---C:\\MyXformedDocs\\---True");

//Book transform, duplicate book

F_ApiCallClient("FrameSLT",

 "TransformFile---C:\\MyDocs\\MyBook.book---C:\\MyXformedDocs\\---True");

TransformFile code samples
The following example shows the basic syntax of an actual TransformFile call, in C FDK
format, to transform the active document without duplicating it.

. . .

F_ObjHandleT docId;

UCharT arg[100];

IntT returnVal;

. . .

/* Get a document ID */

docId = F_ApiGetId(0, FV_SessionId, FP_ActiveDoc);

/* Form the argument for the FindNextNode call */

F_Sprintf(arg, "TransformFile---%d---NULL---True", docId);

/* Call FrameSLT to transform the file */

returnVal = F_ApiCallClient("FrameSLT", (StringT)arg);

/* Report */

if(returnVal > 15)

 F_ApiAlert("Transformation successful.", FF_ALERT_CONTINUE_WARN);

else

 F_ApiAlert("Transformation failed. Please see the report.",

 FF_ALERT_CONTINUE_WARN);

. . .

The following code represents the same functionality in FrameScript format:

Note: Many thanks to Rick Quatro of Carmen Publishing, www.frameexpert.com, for this
FrameScript translation of the previous FDK code sample.

http://www.frameexpert.com

Chapter 6 External Calls to FrameSLT

144 FrameSLT 3.30

// Get the ID of the active document.

Set docId = ActiveDoc;

If(docId = 0)

 MsgBox 'There is no active document.' Mode(Warn);

 LeaveSub;

EndIf

// Convert the document ID to an integer.

New Integer NewVar(docInt) Value(docId);

// Form the argument for the TransformFile call.

Set arg = 'TransformFile---'+docInt+'---NULL---True';

// Call FrameSLT to transform the active document.

CallClient FrameClient('FrameSLT') Message(arg) ReturnVal(iReturnVal);

// Report

If iReturnVal > 15

 MsgBox 'Transformation sucessful.' Mode(Note);

Else

 MsgBox 'Transformation failed. Please see the report.'

 Mode(Note);

EndIf

Detailed example—Calling FrameSLT (FDK)
The following example contains C language code for use with the FDK. For the same sample in
FrameScript form, see “Detailed example—Calling FrameSLT (FrameScript)” on page 146.

This example uses two different XPath expressions to find Emphasis elements and apply
strikethrough text to them. The two XPath expressions used are:

//Section/Body

Emphasis

In summary, the first expression is used to find Body elements that are children of Sections. Then,
it uses the second expression to find Emphasis element children of those Body elements. Note
that these two XPath expressions could be combined into one; however, this example uses them
separately to demonstrate most available FrameSLT calls, and to show how two different XPath
expressions can be used simultaneously.

If you want to use this sample function on a different structure, you can simply change the XPath
expressions as appropriate.

Tip: FrameSLT includes a sample file, External_Calls_Sample.fm, designed to work with
this code. If installed correctly, you should find it in your SampleFiles folder.

VoidT FrameSLT_Sample_Calls()

{

 F_ObjHandleT docId,

 bodyElemId,

 emphasisElemId;

 UIntT xPathSequence1,

 xPathSequence2,

Chapter 6 External Calls to FrameSLT

FrameSLT 3.30 145

 returnVal;

 UCharT sequence1Arg[64],

 sequence2Arg[64],

 resetSequenceArg[64];

 F_TextRangeT tr;

 F_PropValT strikethroughProp;

 /* Get the ID of the active document */

 docId = F_ApiGetId(0, FV_SessionId, FP_ActiveDoc);

 if(!docId)

 {

 F_ApiAlert("No active document", FF_ALERT_CONTINUE_WARN);

 return;

 }

 /* Parse the XPath expressions and retrieve the sequence numbers */

 xPathSequence1 = F_ApiCallClient("FrameSLT",

 "ParseXPath---//Section/Body---True");

 xPathSequence2 = F_ApiCallClient("FrameSLT",

 "ParseXPath---Emphasis---True");

 /* If a parsing error occurred, the return value will be

 * less than 21 (20 is the highest error code) */

 if(xPathSequence1 < 21 || xPathSequence2 < 21)

 {

 F_ApiAlert("Error parsing XPath", FF_ALERT_CONTINUE_WARN);

 return;

 }

 /* Set up the text property structure for applying strikethrough text.

 * Used later. */

 strikethroughProp.propIdent.num = FP_Strikethrough;

 strikethroughProp.propVal.valType = FT_Integer;

 strikethroughProp.propVal.u.ival = True;

 /* Set up the argument for the first FindNextNode call, for the

 * first XPath expression. No context node ID is necessary because

 * the XPath begins with a "go-to-root" axis. */

 F_Sprintf(sequence1Arg, "FindNextNode---%d---%d---0",

 xPathSequence1, docId);

 /* Set up the argument that will be used later to reset the second

 * XPath sequence */

 F_Sprintf(resetSequenceArg, "ResetSequence---%d", xPathSequence2);

 /* Make an initial call to find the first applicable Body element */

 bodyElemId = F_ApiCallClient("FrameSLT", (StringT)sequence1Arg);

Chapter 6 External Calls to FrameSLT

146 FrameSLT 3.30

 /* Launch the "outer loop", which will step through the main

 * flow looking for Body elements that are children of Sections. */

 while(bodyElemId > 20)

 {

 /* Reset the second XPath sequence, in preparation for a new

 * query, using the current Body element as the context node */

 returnVal = F_ApiCallClient("FrameSLT", (StringT)resetSequenceArg);

 if(returnVal != 0)

 {

 F_ApiAlert("Error resetting sequence", FF_ALERT_CONTINUE_WARN);

 break;

 }

 /* Set up the argument to query with the second sequence, using the

 * current Body element as the context */

 F_Sprintf(sequence2Arg, "FindNextNode---%d---%d---%d",

 xPathSequence2, docId, bodyElemId);

 /* Make an initial call to find the first applicable Emphasis element */

 emphasisElemId = F_ApiCallClient("FrameSLT", (StringT)sequence2Arg);

 /* Step through all emphasis children, applying strikethrough text */

 while(emphasisElemId > 20)

 {

 /* Get the text range of the Emphasis element */

 tr = F_ApiGetTextRange(docId, emphasisElemId, FP_TextRange);

 /* Apply strikethrough text */

 F_ApiSetTextPropVal(docId, &tr, &strikethroughProp);

 /* Query for the next Emphasis element */

 emphasisElemId = F_ApiCallClient("FrameSLT", (StringT)sequence2Arg);

 }

 /* Back in the main loop, query for the next Body element*/

 bodyElemId = F_ApiCallClient("FrameSLT", (StringT)sequence1Arg);

 } /* End main loop */

 /* Free the strikethrough PropVal structure */

 F_ApiDeallocatePropVal(&strikethroughProp);

}

Detailed example—Calling FrameSLT
(FrameScript)

Note: Many thanks to Rick Quatro of Carmen Publishing, www.frameexpert.com, for this
FrameScript translation of the previous FDK code sample.

http://www.frameexpert.com

Chapter 6 External Calls to FrameSLT

FrameSLT 3.30 147

The following example contains FrameScript code. For the same sample in C language form, see
“Detailed example—Calling FrameSLT (FDK)” on page 144.

This example uses two different XPath expressions to find Emphasis elements and apply
strikethrough text to them. The two XPath expressions used are:

//Section/Body

Emphasis

In summary, the first expression is used to find Body elements that are children of Sections. Then,
it uses the second expression to find Emphasis elements within those Body elements. Note that
these two XPath expressions could be combined into one; however, this example uses them
separately to demonstrate all available FrameSLT calls, and to show how two different XPath
expressions can be used simultaneously.

If you want to use this sample function on a different structure, you can simply change the XPath
expressions as appropriate.

Tip: FrameSLT includes a sample file, External_Calls_Sample.fm, designed to work with
this script. If installed correctly, you should find it in your SampleFiles folder.

// Get the ID of the active document.

Set docId = ActiveDoc;

If(docId = 0)

 MsgBox 'There is no active document.' Mode(Warn);

 LeaveSub;

EndIf

// Convert the document ID to an integer.

New Integer NewVar(docInt) Value(docId);

// Parse the XPath expressions and retrieve the sequence numbers.

CallClient FrameClient('FrameSLT')

 Message('ParseXPath---//Section/Body---True')

 ReturnVal(xPathSequence1);

CallClient FrameClient('FrameSLT')

 Message('ParseXPath---Emphasis---True')

 ReturnVal(xPathSequence2);

// If a parsing error occurred, the return value will be less

// than 21 (20 is the highest error code).

If (xPathSequence1 < 21) or (xPathSequence2 < 21)

 MsgBox 'Error parsing XPath.' Mode(Warn);

 LeaveSub;

EndIf

// Make a property list to be used for applying the strikethrough text.

New PropertyList NewVar(strikethroughProp)

 Strikethrough(True);

// Set up the argument for the first FindNextNode call, for the

// first XPath expression. No context node ID is necessary

// because the XPath begins with a "go-to-root" axis.

Set sequence1Arg = 'FindNextNode---'+xPathSequence1+'---'+

 docInt+'---0';

// Set up the argument that will be used later to reset the second

Chapter 6 External Calls to FrameSLT

148 FrameSLT 3.30

// XPath sequence.

Set resetSequenceArg = 'ResetSequence---'+xPathSequence2;

// Make an initial call to find the first applicable Body element.

CallClient FrameClient('FrameSLT') Message(sequence1Arg)

 ReturnVal(bodyElemId);

// Launch the "outer loop" which will step through the main flow

// looking for Body elements that are children of Sections.

Loop While(bodyElemId > 20)

 // Reset the second XPath sequence, in preparation for a new query,

 // using the current Body element as the context node.

 CallClient FrameClient('FrameSLT') Message(resetSequenceArg)

 ReturnVal(returnVal);

 If returnVal not= 0

 MsgBox 'Error resetting sequence.' Mode(Warn);

 LeaveLoop;

 EndIf

 // Set up the argument to query with the second sequence, using the

 // current Body element as the context.

 Set sequence2Arg = 'FindNextNode---'+xPathSequence2+'---'+

 docInt+'---'+bodyElemId;

 // Make an initial call to find the first applicable Emphasis element.

 CallClient FrameClient('FrameSLT') Message(sequence2Arg)

 ReturnVal(emphasisElemId);

 // Step through all Emphasis children, applying strikethrough text.

 Loop While(emphasisElemId > 20)

 New Object NewVar(emphasisElemId) IntValue(emphasisElemId)

 DocObject(docId);

 // Apply the strikethrough properties.

 Apply TextProperties TextRange(emphasisElemId.TextRange)

 Properties(strikethroughProp);

 // Find the next Emphasis element.

 CallClient FrameClient('FrameSLT') Message(sequence2Arg)

 ReturnVal(emphasisElemId);

 EndLoop

 // Back in the main loop, query for the next Body element.

 CallClient FrameClient('FrameSLT') Message(sequence1Arg)

 ReturnVal(bodyElemId);

EndLoop

Chapter 6 External Calls to FrameSLT

FrameSLT 3.30 149

Using FrameSLT as an ExtendScript external
object

This release implements some preliminary functionality related to ExtendScript (FrameMaker 10
and later) and the use of FrameSLT as an “external object” (EO). This functionality is currently
limited to setting and retrieving Node Wizard Script parameter values.

In brief, the EO architecture allows you to invoke methods (functions) directly from the FrameSLT
code and receive a simple data type (string, double, integer, or boolean) as a return. The use of
EOs versus CallClient() has a variety of advantages, including:

• A simpler syntax for calling the plugin

• The ability to retrieve strings, versus CallClient() which supports an integer return only

As a side note, the limited current FrameSLT EO support was inspired by the difficulty of returning
a string parameter value with CallClient(). Having seen it work, we believe that this will
eventually expand to cover all functionality that FrameSLT has exposed to CallClient(), and
perhaps more. If you have any comments or suggestions on this subject, we would love to hear
them, while we evaluate the possibilities with EOs and the direction in which we want to take them.

Current EO method support includes two simple functions related to Node Wizard Script
parameters:

setScriptParm(parmName, parmVal)

getScriptParm(parmName)

...where all arguments are strings. As an example, the following script produces an alert box with
the text “Hello world”:

var framesltDLLPath = "C:\\Program Files\\Adobe\\AdobeFrameMaker10" +

 "\\WestStreet\\FrameSLT_FM10.dll";

var framesltEO = new ExternalObject("lib:" + framesltDLLPath);

framesltEO.setScriptParm("MyParm", "Hello world!");

var val = framesltEO.getScriptParm("MyParm");

alert(val);

Note the following:

• The instantiation of the EO requires the correct path to the FrameSLT.dll file.

• When setting and retrieving parameter values with an EO, the notes under SetScriptParm
and GetScriptParmByte about general parameter behavior are still applicable.

• If getScriptParm() is called for an undefined parameter, an error string is returned. This
string is defined by a setting in your local preferences and is set to
“PARAMETER_NOT_DEFINED” from the factory.

Chapter 6 External Calls to FrameSLT

150 FrameSLT 3.30

	Chapter 1 Introduction to FrameSLT
	What is FrameSLT?
	Who uses FrameSLT and when?
	Getting started with FrameSLT
	FrameSLT WARNING!
	Preferences
	Translation of the FrameSLT interface
	Selecting a language
	Language configuration
	Additional language utilities

	Chapter 2 About FrameSLT XPath
	About XPath
	XPath quick primer
	Nodes vs. elements—Terminology
	Supported axes
	Special flow-related axes
	Special “fmprop” axis
	Special book- and file-related axes
	Abbreviated axes
	Supported logical test operators
	Supported functions
	Node position functions
	Node content functions
	Boolean functions

	Node test wildcards
	EDD-applied prefixes/suffixes and node testing
	Unsupported syntax
	Limitations and known issues
	Testing element node text
	Finding text() nodes with no siblings
	Comparing two nodes without a bracketed predicate

	FrameSLT XPath examples
	“Single document” queries
	Cross-book and cross-file queries
	Flow-related queries

	Chapter 3 The Node Wizard and Other Utilities
	The Node Wizard
	Node Wizard searching
	Match First, Match Next, and context nodes
	Match All
	XPath favorites
	About the Node Wizard and document flows
	About the Node Wizard and file opening
	Changing documents/elements during a query
	Match history
	Attribute nodes

	Performing node actions
	Element actions
	Attribute actions
	Important warning about node actions
	“Perform Action(s) and Find Next” button
	Query behavior during “Perform Actions On All” operations
	Element actions that preclude attribute actions
	Wrapping elements and performing an attribute action
	A word on conditional text

	XPath parsing

	Node Wizard scripts
	About Node Wizard scripts
	About subevents
	About document versus whole-book processing
	Element/attribute actions supported by scripts only

	About the script settings file
	Running Node Wizard scripts within FrameMaker
	Writing and editing scripts - General information
	About parameters
	Script name and description
	Script-level general settings
	Autorun triggers
	Event-level details
	Disabling events and actions
	Event name and description
	XPath expression
	Flows to process
	Element actions
	Attribute actions
	String operations
	Numeric operations
	“Other” actions

	FrameSLT condition management
	Condition management settings
	Processing details
	Document- and book-wide actions
	Element-level actions

	Examples of expressions and settings
	Important note about conditions management features versus the Node Wizard
	Tips on condition management

	Chapter 4 Transformations
	About FrameSLT vs. XSLT
	Required steps to perform transformations
	About stylesheets and transformations
	Customizing an EDD to allow transformation elements
	Launching transformations
	Editing transformation elements
	Source file details
	Querying the “current” document
	Relative vs. absolute paths
	Opening, closing, and saving source files
	Use of parameters in source file paths

	About starting contexts
	About cascading contexts
	About preserving transformation elements after a transformation
	About parameters in XPath expressions
	Using “FSLT_template” markers
	How “FSLT_template” markers work
	Creating the marker type
	Adding markers to the stylesheet

	Chapter 5 Transformation Element Reference
	FSLT_choose
	FSLT_choose processing
	FSLT_choose attributes
	FSLT_choose example

	FSLT_copy-of
	FSLT_copy-of processing
	FSLT_copy-of attributes
	FSLT_copy-of example

	FSLT_create-xref
	FSLT_create-xref processing
	Special note on generated cross-references
	FSLT_create-xref attributes
	FSLT_create-xref example

	FSLT_for-each
	FSLT_for-each processing
	FSLT_for-each attributes
	FSLT_for-each example

	FSLT_if
	FSLT_if processing
	FSLT_if attributes
	FSLT_if example

	FSLT_otherwise
	FSLT_otherwise processing
	FSLT_otherwise attributes
	FSLT_otherwise example

	FSLT_param
	FSLT_param processing
	FSLT_param attributes

	FSLT_set-attribute
	FSLT_set-attribute processing
	FSLT_set-attribute attributes
	FSLT_set-attribute example

	FSLT_set-marker
	FSLT_set-marker processing
	FSLT_set-marker attributes
	FSLT_set-marker example

	FSLT_sort
	FSLT_sort processing
	Special note on using FSLT_sort with FSLT_tablerow
	FSLT_sort attributes
	FSLT_sort example

	FSLT_table
	FSLT_table structure and requirements
	Basic steps for creating a valid FSLT_table structure
	Complete FSLT_table structure example
	Generating rows with FSLT_tablerow
	Sorting generated table rows with FSLT_sort
	Other FSLT table component element setups
	Checking an FSLT_table structure before transformation

	FSLT_table processing
	FSLT_table attributes
	FSLT_table example

	FSLT_tablebody
	FSLT_tablebody processing
	FSLT_tablebody attributes
	FSLT_tablebody example

	FSLT_tablecell
	FSLT_tablecell processing
	FSLT_tablecell attributes
	FSLT_tablecell example

	FSLT_tableheading
	FSLT_tableheading processing
	FSLT_tableheading attributes
	FSLT_tableheading example

	FSLT_tablefooting
	FSLT_tablefooting processing
	FSLT_tablefooting attributes
	FSLT_tablefooting example

	FSLT_tablerow
	FSLT_tablerow processing
	FSLT_tablerow attributes
	FSLT_tablerow example

	FSLT_tabletitle
	FSLT_tabletitle processing
	FSLT_tabletitle attributes
	FSLT_tabletitle example

	FSLT_template
	FSLT_template processing
	Locations for “source” FSLT_template elements
	About the “FSLT_template” flow
	Using FSLT_template to facilitate complex re-transformations

	FSLT_template attributes
	FSLT_template example

	FSLT_value-of
	FSLT_value-of processing
	FSLT_value-of attributes
	FSLT_value-of example

	FSLT_when
	FSLT_when processing
	FSLT_when attributes
	FSLT_when example

	Chapter 6 External Calls to FrameSLT
	How to send an external call to FrameSLT
	General information on external calls
	Typical sequences of events
	Call reference
	AllocateNodeHandlers
	Syntax
	Usage description
	Returns

	ChangeCallDelimiter
	Syntax
	Returns
	ChangeCallDelimiter syntax example

	ClearScriptParms
	Syntax
	Returns

	DeallocateNodeHandlers
	Syntax
	Usage description
	Returns

	FindNextNode
	Syntax
	Usage description
	Returns
	Syntax examples
	Code sample

	GetAppParm
	Syntax
	Returns
	Syntax example

	GetScriptParmByte
	Syntax
	Usage description
	Returns
	Syntax example

	Hello
	Syntax
	Usage description
	Returns
	Syntax example

	ParseXPath
	Syntax
	Usage description
	Returns
	Syntax example

	ResetSequence
	Syntax
	Usage description
	Returns

	RetrieveAttrMatch
	Syntax
	Usage description
	Returns
	Code sample

	RetrieveFileMatch
	Syntax
	Returns

	RunNWScript
	Syntax
	Usage description
	Returns
	Syntax example
	Code sample

	SetAppParm
	Syntax
	Returns
	Syntax example

	SetParam
	Syntax
	Usage description
	Returns
	Syntax examples

	SetScriptParm
	Syntax
	Usage description
	Returns
	Syntax example

	TransformFile
	Syntax
	Usage description
	Returns
	TransformFile syntax examples
	TransformFile code samples

	Detailed example—Calling FrameSLT (FDK)
	Detailed example—Calling FrameSLT (FrameScript)
	Using FrameSLT as an ExtendScript external object

