
FrameSLT 2.3
User Guide

©2008 West Street Consulting. All rights reserved. Adobe and FrameMaker are registered trademarks of
Adobe Systems, Inc. FrameScript is a registered trademark of Finite Matters, Ltd. XPath is a language
standard developed and maintain by the W3 Consortium. All other marks belong to their respective
owners.

West Street Consulting reserves the right to change its software and documentation without notice. In
addition, West Street Consulting is not responsible for any consequences that result from user, application,
or documentation error. By using this software, you agree to do so at your own risk.

3

FrameSLT 2.3 User Guide

Table of Contents

Chapter 1 Introduction to FrameSLT
What is FrameSLT? .. 9
Getting started with FrameSLT ... 9
FrameSLT WARNING! .. 10
General information .. 10

Preferences .. 10
Warning suppression ... 14
Memory settings .. 15

Chapter 2 About FrameSLT XPath
About XPath ... 17
XPath quick primer ... 17
Nodes vs. elements—Terminology ... 19
Supported axes .. 19
Special “fmprop” axis ... 21
Abbreviated axes .. 22
Supported logical test operators .. 23
Supported functions .. 23

Node position functions .. 23
Node content functions ... 24
Boolean functions ... 24

Node test wildcards ... 25
EDD-applied prefixes/suffixes and node testing .. 25
Unsupported syntax .. 25
Limitations and known issues ... 26

Testing node text with non-quoted string literals .. 26
Testing element node text ... 27
Finding text() nodes with no siblings .. 27
Comparing two nodes without a bracketed predicate ... 28

FrameSLT XPath examples .. 28
Chapter 3 The Node Wizard and Other Utilities

The Node Wizard .. 33
XPath parsing .. 33
Node Wizard searching ... 33

Match First, Match Next, and context nodes .. 34
Match All .. 35
About the Node Wizard and document flows ... 35
Changing documents/elements during a query ... 36
Match history .. 37
Attribute nodes .. 37

Performing node actions ... 38
Element actions ... 38
Attribute actions .. 39
Important warning about node actions .. 43
“Perform Action(s) and Find Next” button ... 43

4 FrameSLT 2.3

Query behavior during “Perform Actions On All” operations ..43
Element actions that preclude attribute actions ...43
Wrapping elements and performing an attribute action ...44
A word on conditional text ..44

Node Wizard scripting ...44
About Node Wizard scripts ...45

About subevents ...45
Element/attribute actions supported by scripts only ..46

About the script settings file ..47
Running Node Wizard scripts within FrameMaker ...47
Writing and editing scripts ..48

Highest level elements ...49
Script name and description ...49
General settings ...49
Autorun triggers ...50
Script event settings ...51

FrameSLT condition management ..58
Condition management settings ..58
Processing details ..61

Document- and book-wide actions ...61
Element-level actions ..61

Examples of expressions and settings ...62
Important note about conditions management features versus the Node Wizard64
Tips on condition management ..64

Chapter 4 Transformations
About FrameSLT vs. XSLT ...67
Required steps to perform transformations ...68
About stylesheets and transformations ..69
Customizing an EDD to allow transformation elements ...69
Launching transformations ..70
Editing transformation elements ...70
Source file details ..71

Querying the “current” document ...71
Relative vs. absolute paths ..71
Opening, closing, and saving source files ...72
Use of parameters in source file paths ...72

About starting contexts ..72
About cascading contexts ..74
About preserving transformation elements after a transformation ..75
About parameters in XPath expressions ..76
Using “FSLT_template” markers ..77

How “FSLT_template” markers work ...78
Creating the marker type ...78
Adding markers to the stylesheet ..78

Chapter 5
Transformation Element Reference

FSLT_choose ..81
FSLT_choose processing ...81

FrameSLT 2.3 5

FSLT_choose attributes ...82
FSLT_choose example ..82

FSLT_copy-of ..83
FSLT_copy-of processing ..83
FSLT_copy-of attributes ..84
FSLT_copy-of example ..84

FSLT_create-xref ..85
FSLT_create-xref processing ...85
Special note on generated cross-references ...85
FSLT_create-xref attributes ...86
FSLT_create-xref example ..86

FSLT_for-each ..87
FSLT_for-each processing ..88
FSLT_for-each attributes ..88
FSLT_for-each example ...88

FSLT_if ..89
FSLT_if processing ..89
FSLT_if attributes ..90
FSLT_if example ..90

FSLT_otherwise ...91
FSLT_otherwise processing ...91
FSLT_otherwise attributes ..91
FSLT_otherwise example ...92

FSLT_param ...92
FSLT_param processing ...92
FSLT_param attributes ...92

FSLT_set-attribute ..93
FSLT_set-attribute processing ..93
FSLT_set-attribute attributes ..94
FSLT_set-attribute example ...94

FSLT_set-marker ...95
FSLT_set-marker processing ...95
FSLT_set-marker attributes ...96
FSLT_set-marker example ...96

FSLT_sort ...97
FSLT_sort processing ...97
Special note on using FSLT_sort with FSLT_tablerow ..98
FSLT_sort attributes ..98
FSLT_sort example ...98

FSLT_table ...99
FSLT_table structure and requirements ...99

Basic steps for creating a valid FSLT_table structure ..100
Complete FSLT_table structure example ...100
Generating rows with FSLT_tablerow ..101
Sorting generated table rows with FSLT_sort ...102
Other FSLT table component element setups ..102
Checking an FSLT_table structure before transformation ...102

FSLT_table processing ...102
FSLT_table attributes ...103

6 FrameSLT 2.3

FSLT_table example ...103
FSLT_tablebody ...103

FSLT_tablebody processing ...103
FSLT_tablebody attributes ..103
FSLT_tablebody example ...103

FSLT_tablecell ...103
FSLT_tablecell processing ...103
FSLT_tablecell attributes ..103
FSLT_tablecell example ...104

FSLT_tableheading ..104
FSLT_tableheading processing ..104
FSLT_tableheading attributes ..104
FSLT_tableheading example ..104

FSLT_tablefooting ..104
FSLT_tablefooting processing ..104
FSLT_tablefooting attributes ..104
FSLT_tablefooting example ..104

FSLT_tablerow ..104
FSLT_tablerow processing ..104
FSLT_tablerow attributes ..105
FSLT_tablerow example ...105

FSLT_tabletitle ...105
FSLT_tabletitle processing ...105
FSLT_tabletitle attributes ...105
FSLT_tabletitle example ...105

FSLT_template ..106
FSLT_template processing ..106

Locations for “source” FSLT_template elements ...106
About the “FSLT_template” flow ..106
Using FSLT_template to facilitate complex re-transformations107

FSLT_template attributes ..107
FSLT_template example ...108

FSLT_value-of ..110
FSLT_value-of processing ..110
FSLT_value-of attributes ..111
FSLT_value-of example ...112

FSLT_when ...113
FSLT_when processing ...113
FSLT_when attributes ..113
FSLT_when example ...113

Chapter 6 External Calls to FrameSLT
How to send an external call to FrameSLT ...115
General information on external calls ...116
Typical sequences of events ..116
Call reference ..116

AllocateNodeHandlers ...117
Syntax ..117
Usage description ...117

FrameSLT 2.3 7

Returns ...117
ChangeCallDelimiter ..117

Syntax ..117
Returns ...117
ChangeCallDelimiter syntax example ..118

DeallocateNodeHandlers ..118
Syntax ..118
Usage description ...118
Returns ...118

FindNextNode ..118
Syntax ..118
Usage description ...119
Returns ...120
FindNextNode syntax examples ...121
FindNextNode code sample ..121

Hello ...122
Syntax ..122
Usage description ...122
Returns ...122
Hello syntax example ...122

ParseXPath ...123
Syntax ..123
Usage description ...123
Returns ...123
ParseXPath syntax example ...124

ResetSequence ..124
Syntax ..124
Usage description ...124
Returns ...125

RetrieveAttrMatch ..125
Syntax ..125
Usage description ...125
Returns ...126
RetrieveAttrMatch code sample ..126

RunNWScript ...127
Syntax ..127
Usage description ...128
Returns ...128
RunNWScript syntax example ...129
RunNWScript code sample ..129

SetParam ..129
Syntax ..129
Usage description ...130
Returns ...130
SetParam syntax examples ...130

TransformFile ..131
Syntax ..131
Usage description ...131
Returns ...132
TransformFile syntax examples ...133

8 FrameSLT 2.3

TransformFile code samples ..133
Detailed example—Calling FrameSLT (FDK) ...135
Detailed example—Calling FrameSLT (FrameScript) ..137

FrameSLT 2.3 9

Chapter 1
Introduction to FrameSLT

Thank you for choosing to evaluate or purchase FrameSLT. At West Street Consulting,
we are committed to providing products that serve real needs and helping you get the
most out of them.

What is FrameSLT?
FrameSLT is a versatile, XPath-based processor that you can use to perform powerful
queries and structural modifications within structured FrameMaker documents, without
ever having to leave the FrameMaker interface. It includes the FrameSLT Node Wizard,
which operates similarly to the FrameMaker Find/Replace dialog box, but far exceeds
existing capabilities to search and manipulate your structured content.
FrameSLT also provides the powerful transformation engine, which allows you to perform
XSLT-style transformations with your structured FrameMaker documents. By creating
stylesheets that include special transformation elements, you can create highly
configurable, granular schemes of content reuse, not possible before without XML, a
high-end database, or an expensive content management system.
FrameSLT includes an exposed XPath parser and navigator that you can call with other
API clients and third-party applications such as FrameScript® by Finite Matters Ltd®. With
the power of XPath, your custom applications can easily walk through a structure tree in
ways not possible before without the addition of many lines of complex code.
You can use FrameSLT simply as a search tool, or you can use it to perform sweeping
structural changes and content management. Because FrameSLT has the ability to alter
your structure and content, it is critically important that you read “FrameSLT WARNING!”
on page 10 before using the product.

Getting started with FrameSLT
Because FrameSLT is XPath-based, the Node Wizard is immediately ready for work on
your structured documents, regardless of the EDD you are using. For the Node Wizard,
getting started involves little more than understanding the basics of how the dialog box
works.
To perform transformations, you will need to learn about transformation elements and
building stylesheets. FrameSLT includes comprehensive information on transformation
capabilities, as well as tutorials and many sample files. It is encouraged that you read the
material and complete the tutorials before attempting to build your own transformation
schemes. A prior knowledge of XSLT may help you learn faster, but it is not necessarily
required to learn how to use FrameSLT. This software provides dialog boxes, instant error
checking, and other conveniences that XSLT processors typically do not have.

FrameSLT 2.3 10

FrameSLT WARNING!
FrameSLT can perform sweeping, irreversible alterations to your structure and content. IT
IS YOUR RESPONSIBILITY TO MAINTAIN THE INTEGRITY OF YOUR DATA. Before
using FrameSLT to manage structure and content, you should be sure to have backups of
all working files. In addition, after using FrameSLT, inspect your files carefully before
saving the changes. A small XPath error can cause a major difference in the outcome.
If you keep backups and inspect your processed files carefully, your risk of data loss is
low. In any case, however, West Street Consulting can not be held responsible for data
loss that transpires as a result of FrameSLT usage, whether by user or application error.

General information
The following general information applies to all FrameSLT usage.

Preferences
FrameSLT includes a set of preferences that affect various operations of the software.
You should make sure that these preferences reflect how you want FrameSLT to perform.
To access the preferences editor, select FrameSLT > Local Preferences. The editor
contains the following options:
Note: The warning activation options use a three-state checkbox, the “middle” state

indicating that the warning should be displayed the first time only.

Chapter 1 Introduction to FrameSLT

FrameSLT 2.3 11

Tip: Some of these options are difficult to understand. Please contact West Street if you
need more explanation.

General transformation options
Disable screen updates... During transformations, disables any updates to

the document windows as they are transformed.
This option should reduce transformation times by
at least half, but you will not be able to watch
transformations as they occur.

After transformations, close
any source files...

After transformations, closes any source files that
FrameSLT had to open to perform a transformation
query. For more information on how automatic
opening, saving, and closing of files is handled, see
“Opening, closing, and saving source files” on
page 72.

Adhere to standard XSLT
behavior for FSLT_if and
FSLT_when

This option is provided for backwards compatibility
with previous versions of FrameSLT that did not
adhere to normal XSLT rules, with regards to
passing the current context to descendant
transformation elements. Prior to version 2.0,
FSLT_if and FSLT_when would pass down the
context of the test attribute XPath match to
descendant transformation elements, which is
inconsistent with normal XSLT behavior. In other
words, it behaved much like a select attribute on
elements such as FSLT_for-each. With this
option checked, the test attribute expression
serves as a test only, and does not set any context
for descendant transformation elements to inherit.
You should only disable this option if you have
existing stylesheets that would be broken if
FrameSLT actually worked correctly. For more
information, see “FSLT_if” on page 89 and
“FSLT_when” on page 113.

Chapter 1 Introduction to FrameSLT

12 FrameSLT 2.3

Adhere to standard XPath
behavior for the position()
function

This option is provided for backwards compatibility
with previous versions of FrameSLT that did not
treat the position() function correctly.
Previously, FrameSLT did not consider the element
tag when evaluating a position, which is wrong. For
example, with the following expression:
Para[3]

...FrameSLT would only find a Para element if it
was the third sibling on the branch, regardless of
what the previous two siblings were. The correct
behavior is to find the third Para element on the
branch, regardless of its exact position. In other
words, FrameSLT interpreted the previous
expression as:
node()[3 and self::Para]

You should only disable this option if you have
existing stylesheets and/or scripts that would be
broken if FrameSLT actually worked correctly.

Prefer relative paths for xform
element "source_file"
attributes

Causes transformation element dialog boxes to
attempt to resolve a relative path when a source file
is selected. If a relative path cannot be resolved,
the absolute path is used. Note that this setting only
affects the use of transformation element dialog
boxes. It does not change the type of path used for
any existing transformation elements.

Adjust relative "source_file"
paths during Save As actions

Causes FrameSLT to automatically adjust all
relative paths used for source files in
transformation elements when the document is
saved to a new location. If a relative path cannot be
resolved, such as when the document is saved to a
different network drive, the path is converted to an
absolute path. Existing absolute paths always
remain absolute and are unaffected by this setting.

Enable FSLT element editing
by double-clicking elements

Enables the ability to produce a transformation
element dialog box by double-clicking the element,
either in the document window or the Structure
View. If this setting is disabled, you must use a
menu path instead.

Filename addendum for
duplicated, transformed docs

For “duplicate document” transformations, the text
that is added to the file name of the transformed
duplicate.

General transformation options

Chapter 1 Introduction to FrameSLT

FrameSLT 2.3 13

Parameter options for transformations
Consider parameters in XPath
expressions

Allows FrameSLT to recognize and resolve
parameters in XPath expressions, indicated by a
leading dollar sign ($). Otherwise, parameters are
ignored and parsed literally.

Consider parameters in file
paths ("source_file" attribute)

Allows FrameSLT to recognize and resolve
parameters in source file paths, indicated by a
leading dollar sign ($). Otherwise, parameters are
ignored and parsed literally.

Consider parameters in literal
strings

Allows FrameSLT to consider parameters within
string literals, applicable only if parameters are
enabled overall. For example, consider the
following XPath expression:
//Heading="$ThisValue"

If parameters in literal strings are not enabled,
FrameSLT will look for a Heading element with the
text “$ThisValue”. If parameters are enabled,
FrameSLT will attempt to resolve the parameter
$ThisValue and then look for a Heading
element with the respective text.

Node Wizard and scripting options
Enable Node Wizard script
autorunning

Allows Node Wizard scripts to autorun, as a global
setting. If this option is unchecked, the script
autorun feature is disabled for all scripts. For more
infomation, see “Node Wizard scripting” on
page 44.

For Node Wizard actions
between attr and elem text...

Allows attribute actions which move or copy text
between elements and attributes to move or copy
an empty string. For more information, see
“Attribute actions” on page 39.

After a Node Wizard “match”
event, return focus to the
active file

Causes FrameSLT to return focus to the active
book or document after you click “Match First” or
“Match Next” in the Node Wizard. With this option
checked, any key stroke following the click of these
buttons will act upon the active document,
according to the current insertion point or element
selection. If this option is unchecked, the focus will
remain on the Node Wizard and you will need to
manually click within the active document window
to return focus.

Chapter 1 Introduction to FrameSLT

14 FrameSLT 2.3

Warning suppression
Warning suppression (FrameSLT > Warning Suppression) allows you to activate or
suppress several messages and warnings that the plugin can produce. The checkboxes
in this dialog box are “three-way” checkboxes, where the “middle” state indicates that the
message or warning should only appear once during a FrameMaker session, after which
it is suppressed. Options are as follows:

Memory settings
Amount of memory to reserve
for parsed XPath:

Important memory settings that should not be
altered unless necessary. For more information,
see “Memory settings” on page 15.

Warning before a Node Wizard
“Perform All Actions”

Activates the warning that appears when you click
the “Perform All Actions” button in the Node
Wizard.

Message after a Node Wizard
“Match All” action

Activates the message after you click the “Match
All” button in the Node Wizard which reports the
total number of matches.

Non-error messages
associated with a Node Wizard
script run

Activates the message boxes associated with the
“Run Script” and “Run Event” buttons on the Node
Wizard Scripts dialog. These message boxes
include the confirmation prompt before a Node
Wizard script launch, and the statistics and
completion message boxes after it finishes. With
these messages deactivated, an error-free script
will run with no message boxes. Error-related
warnings will still appear.

Warning before a source doc/
book transformation

Activates the warning that appears when you
attempt to transform a source file; that is, perform a
transformation without duplicating the document
first.

Chapter 1 Introduction to FrameSLT

FrameSLT 2.3 15

Memory settings
In your FrameSLT preferences, you can set the amount of memory to reserve for parsed
XPath data. If the space becomes filled, FrameSLT will empty it and start over. For more
information on preferences, see “Preferences” on page 10.
This setting is a broad approximation only. FrameSLT will function properly regardless of
this setting, because it can parse any XPath expression on the spot and perform queries
based on it. The only reason that XPath data is ever stored is to save time during
subsequent parsing events. The delay caused by parsing XPath is most noticeable during
transformations, when FrameSLT may have to parse multiple expressions as a
preprocessing step. However, once an expression is parsed and the data is stored,
FrameSLT does not need to parse the expression again unless the parsed data is deleted
due to a low memory setting. The retrieval of parsed data is instantaneous, unlike parsing
process itself.
The default setting if 350 kilobytes, which should be enough memory to store 50-150
expressions, dependent upon expression length. For normal usage, this amount should
be more than adequate.

Message after xref creation
with FSLT_create-xref

Activates the post-transformation warning when
one or more cross-references were created by
FSLT_create-xref elements, and the target
file(s) need to be saved to preserve their resolution.
When a cross-reference is created in structured
frame, a value must be assigned to the ID attribute
of the target element. This warning indicates that
an ID attribute was set in a currently unsaved file(s)
which must be saved, otherwise the
cross-reference(s) will be broken.

Warning before saving file -
“duplicate doc” xform

Activates the pre-transformation warning on a
document, if it is a “duplicate document”
transformation and there are unsaved changes in
the document. When duplicating a document,
FrameSLT uses the file on disk, and therefore must
save the document beforehand if it has unsaved
changes.

Chapter 1 Introduction to FrameSLT

16 FrameSLT 2.3

FrameSLT 2.3 17

Chapter 2
About FrameSLT XPath

FrameSLT supports a subset of the W3C XPath standard. Supported components should
behave exactly to standard. Use of non-supported components will likely cause parsing
errors or unexpected query results.
To use FrameSLT effectively, you must have a good working knowledge of XPath. You
should review this information thoroughly before using FrameSLT, especially the details
on which XPath components are supported, and which are not. Nearly all FrameSLT
functions, including the setup of transformation elements, rely on XPath to navigate the
FrameMaker structure tree.
Expansion of the FrameSLT-supported XPath is dependent on the needs of users like
you, and planned for upcoming releases. If you have a need for an XPath component that
is currently not supported, we’d like to hear from you at info@weststreetconsulting.com.

About XPath
The XPath specification, defined by the W3C Consortium, allows querying and navigation
within an XML-style structure tree. It is sometimes considered a simple language in itself,
and is frequently used during XML transformations to query source documents for
content. Unlike a “linear” search, XPath allows you to find elements and attributes under
very specific conditions, including considerations of structural hierarchy, positioning, and
node content.
XPath is ideal for navigating a FrameMaker structure tree, because the markup of such a
tree is very much analogous to XML markup. Without a language such as XPath, you
would be limited to basic name and content searches provided by the standard
FrameMaker Find tool.
There are a wealth of resources available for learning XPath, including the W3C website
at www.w3.org and free tutorials at websites such as www.w3schools.com. Because so
many options are available, this document does not attempt to reproduce a complete
XPath reference here. However, you can get some beginners tips with “XPath quick
primer” on page 17. And, you can see plenty of samples in “FrameSLT XPath examples”
on page 28.

XPath quick primer
XPath is a special syntax designed for the express purpose of walking through a structure
tree and finding very specific instances of elements, attributes, and other “nodes.” It is
reasonably simple to understand once you get started.
A node-matching expression is always a series of “axes” and “node tests.” In essence, an
axis tells which way to go, and the node test tells what to look for when you get there. For
example, consider the following simple XPath:

child::Body

This expression says literally, “start at the context node (like an element), look to its
children, and find any Body elements.” Consider the following structure tree:

http://www.w3.org
http://www.w3schools.com

Chapter 2 About FrameSLT XPath

18 FrameSLT 2.3

If the context element were the Section element, that XPath would find its three Body
children. If the context were any other element, nothing would be found. In the FrameSLT
Node Wizard, the currently selected element becomes the default context node.
However, the selected element may not be relevant, if the first axis is a “go-to-root” axis,
as explained in the next paragraph.
An important aspect of XPath is the first axis. In the previous example, the first axis (and
only axis) is child:: (go-to-child). So, a starting context must be manually provided
(i.e., for the Node Wizard, the currently-selected element.) However, in many cases,
especially with FrameSLT, you may find yourself using XPath that begins with the special
“go-to-root” axis, indicated by a forward slash (/). This axis instructs the parser to begin at
the root of the structure tree, using it as the initial context. With this axis, the context
always starts at the root, and the currently-selected element is irrelevant.
As an example, the following XPath will find the highest-level element, HLE:

/child::HLE

It is very important to note that the forward slash does not set the HLE as the context... the
context is actually “above” the HLE, at the true “root.” For example, the following XPath
will find nothing, because the only child of the root is the highest level element, HLE:

/child::Section

However, the following expressions will find the Section element:
/child::HLE/child::Section

/descendant::Section

The descendant axis works because the Section is a descendant of the root. In fact,
you can find any element by name with that particular expression. Note that the forward
slash only means “go-to-root” if it is at the beginning. Otherwise, it is the delimiter
between axis/node test components.
XPath also allows “predicates,” which are subexpressions in brackets used for testing
something. You can use any axis in a predicate, and nest predicates within predicates as
needed. For example, the following XPath will find the Section element again, because
the predicate tests for the presence of an Output attribute:

/descendant::Section[attribute::Output]

Chapter 2 About FrameSLT XPath

FrameSLT 2.3 19

In this case, the predicate doesn’t care what the value of Output is... only that the
attribute exists. However, you can test values too, for example:

/descendant::Section[attribute::Platform = "Unix"]

That expression will find the Section, because the node test (Section) matches, and
the predicate is satisfied. However, the following expression will find nothing, because the
predicate is never satisfied:

/descendant::Section[attribute::Platform = "PDF"]

Once this begins to makes sense, take a look at the examples in “FrameSLT XPath
examples” on page 28. Before long, you should be able to master XPath, and see just
how versatile and powerful it is as a structure query tool.

Nodes vs. elements—Terminology
When discussing XML and XPath, the word “node” is used frequently to describe a
generic location type within a structure tree. A node can be a place such as an element,
an attribute, or a namespace... essentially any definable place in the structure tree that a
query can step to. As you study XPath elsewhere, you will find this word used much more
frequently than “element” and “attribute.”
The FrameMaker interface and documentation, though, do not use this word, referring to
locations specifically as elements and attributes. Therefore, the FrameSLT interface and
documentation attempt to maintain this convention. However, when working with XPath,
the word “node” is sometimes impossible to avoid, especially when the type of node is not
specific. Therefore, an effort has been made in this document to adhere to the following
terminology conventions:

• Node When used alone, this word generally means “an element or attribute.”
• Element node A FrameMaker element
• Attribute node A FrameMaker attribute

In reality, the term “node” refers more generally to any point within a branching structure
where branches begin, terminate, or propagate. For the purposes of this document,
however, an association with elements and attributes should be sufficient.

Supported axes
FrameSLT supports all XPath axes except namespace::. Using the “wildcard” character
to indicate “any non-text node,” the following examples illustrate supported axes:

• attribute::*—Finds all attributes of the context node.
• self::*—Finds the context node.
• child::*—Finds all children of the context node.
• descendant::*—Finds all descendants (children, grandchildren, etc.) of the

context node.
• descendant-or-self::*—Finds all descendants (children, grandchildren, etc.) of

the context node, including the context node.
• parent::*—Finds the parent of the context node.
• ancestor::*—Finds all ancestors (parents, grandparents, etc.) of the context node

Chapter 2 About FrameSLT XPath

20 FrameSLT 2.3

• ancestor-or-self::*—Finds all ancestors (parents, grandparents, etc.) of the
context node, including the context node.

• preceding::*—Finds all preceding sibling nodes and all descendants of them, in
document order. For example:

• preceding-sibling::*—Finds all preceding sibling nodes only, and excludes
descendants, in document order. For example:

• following::*—Finds all following sibling nodes and all descendants of them, in
document order. For example:

Chapter 2 About FrameSLT XPath

FrameSLT 2.3 21

• following-sibling::*—Finds all following sibling nodes only, and excludes
descendants, in document order. For example:

Special “fmprop” axis
FrameSLT implements a non-standard fmprop axis for querying on FrameMaker
document properties. The notation is similar to standard W3C-defined axes, but rather
than indicating movement towards a node in the structure tree, it directs the retrieval of
some property associated with the current element node (that is, the context node).
As an example, the following expression will match all elements that have the “Body”
paragraph format applied to the underlying paragraph, or the first underlying paragraph if
the element wraps multiple paragraphs:

Chapter 2 About FrameSLT XPath

22 FrameSLT 2.3

//*[fmprop::PgfTag="Body"]

...where PgfTag is the specific notation that indicates a paragraph tag query. As another
example, assuming that Graphic is a graphic element, the following expression matches
all Graphic elements whose underlying anchored frame contains a referenced PNG file:

//Graphic[contains(fmprop::ImportObFile, ".png")]

Note that this evaluation would be case-sensitive, so a file with a .PNG extension would
not make a match, unless the non-standard contains-ci() function were used
instead. For more information, see “Supported functions” on page 23.
Currently, a very small subset of FrameMaker properties are actually supported by the
fmprop axis, as described in the following table. There are many hundreds of potential
properties available for evaluation, so it is not feasible to implement all of them at once.
However, new properties will be added upon request. If you have a need to query a
certain type of property, please contact us and we may be able to issue you a patch.

Abbreviated axes
FrameSLT supports most XPath abbreviations for supported axes and functions, as
shown in the following examples. If not shown, the abbreviation is not supported.

fmprop property What is retrieved
ImportObFile Full path of each imported (referenced) file in the underlying

anchored frame. If the test matches a single file, the predicate is
considered satisfied. This property is relevant to graphic
elements only. Example:
//Graphic[contains-ci(fmprop::ImportObFile, ".png")]

PgfTag Paragraph tag assigned to the span of text that the element
wraps. Example:
//*[fmprop::PgfTag="Body"]

TblTag Table format tag of the current table, only applicable for table
component elements. Do not use this property to test paragraph
container elements inside table cells; rather, use the ancestor
axis to test the ancestor cell, row, or table instead. Example:
//Table[fmprop::TblTag="Ruling"]

Abbreviated syntax Equivalent long version
/Section/Para /child::Section/child::Para

/Section[@Output = "PDF"] Section[attribute::Output = "PDF"]

//Section/Para /descendant-or-self::Section/child::Para

. self::node()

.. parent::node()

/Section[5] /child::Section[position() = 5]

/Body[last()] child::Body[position() = last()]

Chapter 2 About FrameSLT XPath

FrameSLT 2.3 23

Supported logical test operators

Examples:
child::Para[position() >= 5] Select all Para children in the fifth position or
higher.
Heading[. != "This is a heading"] Select all Heading children that do not
contain the text “This is a heading.”
Conditional[@Output = "PDF"] Select all Conditional children that have an
Output attribute, and at least one of the values is PDF.

Supported functions
FrameSLT XPath supports the following functions:

• position()

• last()

• contains()

• contains-ci()

• starts-with()

• starts-with-ci()

• not()

The following sections describe these functions in more detail.

Node position functions
FrameSLT supports the following position-related functions:

• position() Returns an element node’s position in a branch relative to its siblings.
The behavior of this function differs according to the most recent previous axis. See
the W3C documentation for more information.

• last() Returns the position of the last element node in the branch containing the
context element node

For example, a test for position() = 3 would only match if the element were in the
third position. Or, a test for last() = 3 would only match if the element were on last on
a branch and in the third position.
In an expression, the order of functions and operational terms is unimportant. For
example, position() = 3 means the same as 3 = position().

Operator Meaning
= or == equals
!= does not equal
> greater than
< less than
>= greater than or equal to
<= less than or equal to

Chapter 2 About FrameSLT XPath

24 FrameSLT 2.3

For more detailed examples, see “FrameSLT XPath examples” on page 28.

Node content functions
FrameSLT supports the following content-related functions:

• contains(x,y) Returns the string “true” if the string “x” contains the string “y”,
otherwise returns the string “false”. This function is case-sensitive.

• contains-ci(x,y) Returns the string “true” if the string “x” contains the string “y”,
otherwise returns the string “false”. This function is not case-sensitive.

• starts-with(x,y) Returns the string “true” if the string “x” starts with the string “y”,
otherwise returns the string “false”. This function is case-sensitive.

• starts-with-ci(x,y) Returns the string “true” if the string “x” starts with the string “y”,
otherwise returns the string “false”. This function is not case-sensitive.

Note: contains-ci() and starts-with-ci() are not part of the W3C XPath
recommendation. They are “add-on” functions provided with FrameSLT for your
convenience.

All of these functions require two arguments, which can either be a literal string or a node
test. In the case of a node test, the content of the matched node becomes the string for
comparison when the function is evaluated. If any node test for any argument fails, the
function will return “false.”
As an example, the following function will return “true” if a child Heading element
contains the text “mytext”:

contains(Heading,"mytext")

The following function will return “true” if the current context node contains this text:
contains(.,"mytext")

Functions such as these are used in predicates, and if a string comparison operator is
missing, the parser assumes a match of “true” to satisfy the predicate. Therefore, the
following XPath expressions are functionally equivalent:

//*[contains(., "mytext")]

//*[contains(., "mytext") = "true"]

//*[contains(., "mytext") != "false"]

These expressions will all match any element in the tree that contains the text string
“mytext”.
For more detailed examples, see “FrameSLT XPath examples” on page 28.

Boolean functions
FrameSLT supports the following Boolean-related function:

not() Returns either the string “true” or “false”, intending to represent the opposite of
the return of its argument.

not() always takes a single argument. If the argument is a node test (that is, returns a
node value), the function will return “false” if a node is found, otherwise it returns “true”.
For example, the following function will return “true” only if a child Heading element does
not exist, with respect to the current context:

not(Heading)

Chapter 2 About FrameSLT XPath

FrameSLT 2.3 25

Or as another example, the following function will return true only if the context element
itself is not named Heading:

not(self::Heading)

If the argument returns a string value, not() will return “true” only if the return string is
empty or equals “false”. For example, the following functions will return “true”:

not("")

not("false")

Besides literal strings, any argument that returns a literal string, such as another function,
is evaluated in the same fashion. For example, the following function will return “true” only
if the context node does not contain the text “mytext”:

not(contains(.,"mytext"))

The not() function is a powerful tool that can make XPath queries more precise, but the
logic can quickly become complex. For more detailed examples, see “FrameSLT XPath
examples” on page 28.

Node test wildcards
FrameSLT supports the asterisk (*) wildcard for node testing, which indicates “any”
element node. For example, the following expression will match every element in the
document:

//*

The asterisk will not match text nodes, and it must appear alone. For example, you
cannot use:

//B*dy

...to match Body elements.

EDD-applied prefixes/suffixes and node
testing

When you test an element for content, such as in the following expression:
//Section[Heading = "My Heading"]

...no prefixes or suffixes applied by the EDD are considered. Therefore, in the example
above, the Heading element would have to contain the text “My Heading” as typed by an
author, and any EDD prefixes and/or suffixes are completely ignored.

Unsupported syntax
The following types of XPath syntax are not supported by FrameSLT:

Parenthetical expressions in compound logical tests
Compound logical tests are supported, but not with parenthetical expressions. Therefore,
compound conjunctions are also not supported. For example, the following expression
cannot be processed:

Body[. = "MyText" and (last() or 5)]

Because “back-to-back” predicates are considered to have an “and” logic, the following
expression is also not supported:

Body[. = "MyText"][5 or last()]

Chapter 2 About FrameSLT XPath

26 FrameSLT 2.3

However, all of these situations can be replicated in a longer form, using the “self” axis
and multiple predicates, for example:

Body[. = "MyText" and .[last() or 5]]

Abbreviated attribute and value test
The following abbreviated syntax for testing an attribute value is not supported:

Body[@Output("PDF")]

Instead, use the following:
Body[@Output = "PDF"]

Standalone “go-to-root” XPath expressions
The following expression has no relevance in FrameSLT and is therefore not supported:

/

With XSLT, you might see this XPath expression frequently in template elements, such as
<xsl:template match="/">. However, this concept has no application in FrameSLT,
even for transformations, and therefore the expression cannot be parsed.

Direct syntax to unique ID attribute nodes
The following syntax, used to select an element node with a particular unique ID attribute,
is not supported:

ElementName("ID")

For example, the following expression, used to find a child Body element with the “MyID”
unique ID, cannot be parsed:

Body("MyID")

If you require a query using a unique ID attribute, use the attribute name directly. For
example:

Body[@ID = "MyID"]

Limitations and known issues
The following sections describe known discrepancies between the established XPath
standard and FrameSLT XPath.

Testing node text with non-quoted string literals
In previous versions of FrameSLT, you could test the content of a node without using
quotation marks around the test literal (string). For example, you could test that an
Output attribute contained the text “PDF” with the expression:

//*[@Output = PDF]

This worked because previous versions of FrameSLT did not support the comparison of
content between two nodes, and therefore simply assumed the second argument in the
test was a string. That was wrong and is no longer true, as FrameSLT XPath support has
expanded significantly to regard these types of expressions according to the W3C
standard, with full support for node comparison.
Previous versions of FrameSLT would interpret the expression as “Match any element in
the document with an Output attribute set to “PDF”. In reality, it should have interpreted
it as “Match any element in the document whose content of the Output attribute matches
the content of a child PDF element.” In other words, the PDF portion of the expression

Chapter 2 About FrameSLT XPath

FrameSLT 2.3 27

should have been interpreted as an element name, not a text string, like other XPath
processors.
In summary, you must now write the previous expression as:

//*[@Output = "PDF"]

or:
//*[@Output = 'PDF']

If you have any expressions within your stylesheets that use the older syntax, they must
be corrected for the stylesheets to continue to work. West Street sincerely apologizes for
this oversight in earlier versions and would be happy to assist with fixing your stylesheets.
Even without true node test support, previous versions should have at least enforced the
use of quotation marks in preparation for future versions, and the failure to do this was a
mistake.

Testing element node text
When testing the text of an element node, only the first paragraph is tested. This includes
expressions with whole string evaluations and expressions with functions such as:

//Section[Heading = "MyHeading"]

//Body[contains(.,"some text")]

//BulletList[starts-with(.,"R")]

This limitation is set because test strings could otherwise become enormously long, such
as testing the text of the highest-level element of a 200 page document. Strings of this
length would adversely affect performance and likely cause crashes. If you need to test
the text in a higher-level element, consider using predicates to test subordinate elements,
accomplishing the same goal while reducing the processing strain. For example, instead
of:

//Section[contains(.,"some text")]

...you could use an expression such as:
//Section[descendant::*[contains(.,"some text")]]

or the following equivalent expression:
//Section[contains(*,"some text")]

This limitation does not apply to testing attribute values. For attribute nodes, all text of all
values is always tested.

Finding text() nodes with no siblings
All elements that contain text also have an implied text node, the text itself. While
FrameSLT supports the text() node test, it will not find any text nodes that have no
siblings. That is, it a text() node has no element node siblings, FrameSLT XPath is
currently unable to find it.
It is hoped that this issue should rarely be of importance in FrameSLT functionality,
because FrameMaker’s internal representation of structure would make it difficult to
support such XPath constructions. For Node Wizard functions, you can use actions such
as “Wrap contents in” and “Paste clipboard over contents” to work around the issue. For
transformations, the FSLT_value-of element should alleviate the need for a lone text()
node query.

Chapter 2 About FrameSLT XPath

28 FrameSLT 2.3

Comparing two nodes without a bracketed predicate
FrameSLT supports the shorthand syntax for testing node content, such as:

//Heading = "My Heading"

...which is equivalent to:
//Heading[. = "My Heading"]

The shorter version will not work, however, if you are attempting to compare two node
sets. For example, the following expression is not supported:

//Heading = Body

To accomplish this type of query, you must write it out with an explicit bracketed predicate
using a “to self” node, such as:

//Heading[. = Body]

Normally, these types of comparisons are rare. Note that this limitation applies to the
“baseline” expression only. If the test is already within a predicate, the workaround is not
necessary. For example, the following expression will work fine:

//Section[Heading = Body]

FrameSLT XPath examples
Tips: Always enclose all string literals in single or double quotes. If your literal must

contain double quotes itself, enclose the literal in single quotes, and vice-versa.
Do not enclose integers in quotes.
Don’t forget the parenthesis on functions, such as position(). Without the
parenthesis, FrameSLT will think it is simply looking for an element named
position.
Remember that XPath expressions can become long and complex. Any typo, even
as small as a single character, will likely cause an expression to fail. Take your time
and try not to get frustrated.

Expression Meaning
Body Match all Body children of the context

node.
/Body Match all Body children of the

highest-level element (HLE)
Body[1] Match the first Body child of the

context node.
//Body Match all Body descendants of the

HLE, and the HLE if it is a Body.
/descendant::Body[1] Match all Body descendants of the

HLE, that are the first Body elements
in their respective branches.

Chapter/Section//Body Match all Body descendants of the
Section children of Chapter

Chapter/Section//text() Match all text node descendants of the
Section children of Chapter

Chapter 2 About FrameSLT XPath

FrameSLT 2.3 29

Body/parent::Section Match all Body elements with a
Section parent

Body/ancestor::Section Match all Body elements with a
Section parent or at least one
Section ancestor

Body/ancestor::Section/ancestor::Section Match all Body elements with at least
two Section ancestors

../Body Match all Body siblings of the context
node

/* Match the highest-level element.
//node() Match every element and text node in

the tree.
//* Match every element node in the tree.
//text() Match every text node in the tree.
//*[@Output] Match every element node in the tree

with an Output attribute
//*[@Output = "PDF"] Match every element node in the tree

with an Output attribute set to PDF. In
FrameSLT, if the attribute has multiple
values, they are all considered.

//*[@Output != "PDF" or @Output != ""] Match every element node in the tree
with an Output attribute not set to
“PDF” (any of the attribute’s values), or
not empty.

//*[@*] Match every element node in the tree
that has at least one attribute,
regardless of the attribute contents, if
any.

//Body[../@Output = "PDF"]

or
//Body[..[@Output = "PDF"]]

Match every Body element in the tree
whose parent has an Output attribute
set to “PDF”.

//Body[parent::Section/@Output = "PDF"]

or
//Body[parent::Section[@Output = "PDF"]]

Match every Body element in the tree
with a Section parent, whose
Output attribute is set to “PDF”.

//Body[parent::Section[3]] Match every Body element that has a
Section parent, which is third
Section element on the branch.

//Body[last() = 5] Match every Body element in the tree
that has exactly four Body element
siblings.

Expression Meaning

Chapter 2 About FrameSLT XPath

30 FrameSLT 2.3

//*[5 and 4] Matches nothing. An element cannot
occupy two positions.

//*[@Output = "PDF"][5] Matches the same thing as:
//*[@Output = PDF and 5]

//Section[Heading = "This text"] Match every Section element node
in the tree with a Heading child, with
the text “This text”.

//*[position() > 3 or 5 > position()] Matches the same thing as:
//*[4]

//Heading[. = "This text"]

or
//Heading = "This text"

Match every Heading element node
with the text “This text.”

//Heading[. > "MyHeading"] Match every Heading element node
with text alphabetically greater than
“MyHeading”, such as a Heading with
the text “YourHeading.”
Note: This type of test is more

appropriate for text strings
with no spaces. If you attempt
to alphabetically compare
strings with multiple words,
the results may not be as
reliable.

//*[@Output = "PDF" or Body = "text" or
5 or 4 or last() or .]

Match every element node in the tree.
The final “to self” (.) test satisfies
everything and negates all other
logical tests if they fail.

//*[contains(.,"mytext")] Match every element node in the tree
that contains the text “mytext”.

//*[contains-ci(.,"mytext")] Match every element node in the tree
that contains the text “mytext”, without
regard for case-sensitivity.

//*[contains(@*,"MyValue")] Match every element node in the tree
that has an attribute that contains the
text “MyValue”.

//*[not(contains(@*,"MyValue"))] Match every element node in the tree
that does not have any attribute that
contains the text “MyValue”.

//Section[not(Body)] Match every Section element in the
tree that does not have a child element
named Body.

Expression Meaning

Chapter 2 About FrameSLT XPath

FrameSLT 2.3 31

//Section[not(Body[contains(&*,
"MyValue")])]

Match every Section element in the
tree that does not have a child element
named Body with any attribute
containing the text “MyValue”.

//*[not(self::*[position() = last()])] Match every element node that is not
the last element in its respective
branch.

//Heading[starts-with(.,"R")] Match every Heading element that
starts with the letter “R”.

//Heading[starts-with(.,"R") or
contains(.,"My Heading")]

Match every Heading element that
starts with the letter “R” or contains the
text “My Heading”.

//Section[Heading = Body] Match every Section element that
has a Heading child and a Body child
that both contain exactly the same
text.

//Section[contains(Body,Heading)] Match every Section element that
has any Body child that contains the
whole text string wrapped in any
Heading child.

Expression Meaning

Chapter 2 About FrameSLT XPath

32 FrameSLT 2.3

FrameSLT 2.3 33

Chapter 3 The Node Wizard and
Other Utilities

This section contains information on FrameSLT utilities including:
• “The Node Wizard” on page 33
• “Node Wizard scripting” on page 44
• “FrameSLT condition management” on page 58

The Node Wizard
The Node Wizard is an XPath-based search tool that you can use to perform
highly-customized queries on your structured documents, and if desired, perform
structure manipulation such as element wrapping and setting attributes. Because it is
XPath-based, your ability to find specific nodes is extremely versatile and limited only by
the extent of the markup available for evaluations.
In some respects, the Node Wizard resembles a traditional “Find/Replace” tool, in which
you specify a search criteria, and perhaps an optional action to take when the item is
found. Unlike FrameMaker’s native Find tool, however, the Node Wizard can use XPath
to evaluate nearly any markup quality of an element or attribute during its queries, and
perform a host of useful actions when it finds its targets.

XPath parsing
The Node Wizard includes an option to parse your XPath only and forgo any searching.
This function is a convenience to help you check for syntax errors in your XPath. With this
option, you can also print the parsed XPath components to the console for rudimentary
debugging purposes. This console report can help you see how FrameSLT recognized
the components of your XPath, and may help you correct errors. For example, if you
forget to put the parentheses on a “position()” function, the console report will indicate
that the component was recognized as a test for a node named “position,” rather than a
logical test involving a node’s position.
FrameSLT parses XPath into a tree-like structure which it navigates through while
searching your documents. The console report, therefore, attempts to outline this parsed
XPath tree. Please note that the XPath processing is somewhat complex and this console
report is not intended to be a comprehensive debugging tool. It is used during the
development and testing of FrameSLT, and has been simply left there in the event that
you might find some use for it as well. With some experience, you should at least be able
to see how axes, functions, node tests, and predicates are recognized. For complex
expressions and query issues, though, you may need to simply run experiments until your
queries behave as expected.

Node Wizard searching
You can use the node wizard as a “search-and-act” tool, or simply as a search tool. In
either case, the internal search methodology and XPath handling is the same. For the
most part, if you understand XPath, searching with the Node Wizard is intuitive and

FrameSLT 2.3 34

requires little explanation. However, the Node Wizard does have certain characteristics
which you should understand before using it, as explained in the following sections.

Match First, Match Next, and context nodes
An XPath query is a context-based process, during which you begin at a certain point,
and each successive query is dependent on the context of the previous query. Any given
query has a definitive starting and ending point, unlike a general search, which can be
circular. Hence, the Wizard requires both a Match First and Match Next button. Match
First starts (or restarts) the search at the appropriate context node, and Match Next
resumes the query from the context of the previous query.
As such, an awareness of the original context node is important. If your XPath expression
begins with a go-to-root axis (“/”), the process is simple. The original context node is set
at the structural root and you do not need to be concerned with it. However, if your XPath
does not begin with this axis, your original context becomes the currently selected
element node when you click Match First. If no node is completely selected, the context
node becomes the element that is the direct parent of the insertion point. Therefore, if you
are using XPath that does not begin with a slash, you must remain conscious of where
you have set the starting context.
As an example, consider the following structure tree, with a Section element selected:

If you use the following XPath expression:
//Body

...your first query will find the first Body element in the tree, sibling to the Title element.
However, if you use the following XPath expression:

Body

...your query will find the first Body element under the selected Section element,
because in the absence of any other context, the Section element becomes the original
context. After the query, if you clicked Match First again, it would find nothing, because
the newly-selected Body element would be set as the original context and this element
has no children at all.
For simplicity, you should use XPath that begins with the “go-to-root” axis whenever
possible. If you are performing document- or book-wide node actions with the “Perform
Actions On All” button, this axis is required.

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 2.3 35

Note: In your FrameSLT preferences, you can specify whether or not the focus should
automatically return to the active document after clicking “Match First” or “Match
Next.” For more information, see “Preferences” on page 10.

Match All
The Match All button finds every match according to current Node Wizard settings and
places them in the match history, after which you can use the “<<“ and “>>” buttons to
shuffle through them. The button has the same effect as if you clicked Match First once,
then clicked Match Next repeatedly until all matches were exhausted.
You can set your preferences to optionally report on the number of matches each time
you click the button. For more information, see “Preferences” on page 10.

About the Node Wizard and document flows
The Node Wizard can be used to query any structured flow in a document. In addition,
you can have Node Wizard actions implemented in any structured flow. The consideration
of which flow to process depends on the current location of the insertion point and the
status of the Process/query all structured flows checkbox, as follows:

Chapter 3 The Node Wizard and Other Utilities

36 FrameSLT 2.3

Changing documents/elements during a query
When you click “Match First” or “Match Next,” FrameSLT stores all applicable contexts in
memory, and resumes from those contexts the next time you click “Match Next.”
Therefore, manually changing the element selection after a query will not affect the query
sequence if you click “Match Next” again.
The stored context, however, is unique to the document on which you began the query.
As such, if you change active documents and then click “Match Next,” the search will fail,
because the contexts from the old document are not applicable in the new one.

“Process/query all
structured flows” is
unchecked

• For document operations, all processing will occur
within the flow that contains the current insertion point.
If there is no insertion point, FrameSLT will assume
the main flow.

• For book operations, FrameSLT will always assume
the main flow.

For example, if you are processing a document and you
click “Match First,” the query will begin in the flow that
contains the current insertion point. If you did not have any
insertion point established, the query will begin in the main
flow, usually flow “A.” The query will not expand to any
other flow, unless you reset the insertion point to another
flow and click “Match First” again.
“Perform Actions On All” exhibits similar behavior. If you
have an insertion point established in a flow, the action(s)
will be performed in that flow. If there is no insertion point,
the action(s) will be performed in the main flow. If you are
processing a book, the action(s) will be performed in the
main flow of all documents in the book.

“Process/query all
structured flows” is
checked

For a book or document operations, processing will occur
in all structured flows, starting from the first one FrameSLT
finds in the document(s). The current location of the
insertion point is ignored.
For example, if you are processing a document and you
click “Match First,” FrameSLT will start the query in the
first structured flow it finds. It will continue the query
through all structured flows in the document until it finds a
match. If it gets through all structured flows without
making a match or exhausts all matches, it will then report
“Not found.” If you are searching a whole book, the same
process will occur for all documents in the book, except
that it will not report “Not found” until every document in
the book has been queried.
A similar behavior occurs for “Perform Actions On All. If
you are processing a document, the action(s) will be
performed on all flows in the document. If you are
processing a book, the action(s) will be performed in all
structured flows in all documents in the book.

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 2.3 37

Therefore, you should never switch documents in the middle of a document-based query,
unless you begin a new query by clicking “Match First.”
In addition, structural changes, such as deleting and wrapping elements, can potentially
destroy the original contexts and cause subsequent “Match Next” actions to fail. For this
reason, the “Match Next” button may become disabled after performing one of these
actions and require the query to be restarted with “Match First.” Note that during a
“Perform Actions on All” operation, all possible XPath node matches are found and stored
before any actions are performed, preventing the need to mimic this behavior during
automated actions. For more information about FrameSLT behavior during “Perform
Actions On All,” see “Query behavior during “Perform Actions On All” operations” on
page 43.

Match history
The Node Wizard includes buttons that allow you to shuffle through the history of element
nodes matched by the XPath expression, through the use of the Match First and Match
Next buttons. When you step through the history, you are stepping through the history of
XPath queries only. No XPath processing takes place when you use these buttons, and
structural alterations that occurred since the history was stored may interfere with their
functionality.
Tip: The XPath match history is reset with each successful query initiated by the Match

First button.

Attribute nodes
In your XPath, you can specify a query for an attribute node. You should be aware,
though, of how attribute node matching behaves with regard to Node Wizard functions, as
follows:

• Node selection, after a “match” action When you click “Match First” or “Match
Next,” FrameSLT selects an element in the document if a match is made. If the XPath
matches an element node, it will select that element. If it matches an attribute node, it
will select the element that contains the matched attribute. In the case of an attribute
node, you will not know from the element selection alone which attribute was
matched; you will only know the element that contains the matched attribute.

• Element actions When the XPath matches an element node, the specified element
action occurs on the matched element. When the XPath matches an attribute node,
the element action occurs on the element that contains the matched attribute node.

• Attribute actions Attribute actions may occur on a matched attribute node, a
specified attribute node, or both, depending on the XPath setup and action type. This
situation can become complex and is explained in more detail under “Attribute
actions” on page 39.

As an example, consider the following structure tree:

Chapter 3 The Node Wizard and Other Utilities

38 FrameSLT 2.3

With this structure, the following two expressions would produce the same result when
“Match First” is clicked. That is, both would select the Title element:

/*/@ID

/*[@ID]

Performing node actions
As an option, you can perform a variety of element and attribute actions during your
queries. The following sections describe the behavior of these actions in more detail.

Element actions
• Retag as Retags matched element nodes with the selected tag name. That is, it

changes the element name.
• Wrap element in Wraps the matched element node and all its contents in a new

element with the selected tag name.
• Wrap contents in Wraps the entire contents of the matched element node in a new

element of the selected tag. The new element becomes the first and only child of the
original matched element.

• Unwrap Unwraps (and discards) the matched element node tag. The contents of the
element are preserved and placed on the structure tree where the original element
resided.

• Move up Slides the matched element node up its branch one position, making it the
previous sibling of its formerly previous sibling. If the element is already at the top of
its branch (that is, the first child of its parent), this action has no effect.

• Move down Slides the matched element node down its branch one position, making
it the following sibling of its formerly followng sibling. If the element is already at the
bottom of its branch (that is, the last child of its parent), this action has no effect.

• Promote When an element is promoted, it becomes a sibling of its former parent.
After promotion, it appears immediately after its former parent. The siblings that follow
it become its children.

• Demote When demoted, an element becomes a child of the sibling element before
it.

• Delete element Deletes the matched element node and all its children.
• Delete contents Deletes the entire contents of the matched element node, leaving

an empty element.
• Insert elem before Inserts a new, empty element of the specified tag directly before

the matched element node, as its immediate previous sibling.
• Insert elem after Inserts a new, empty element of the specified tag directly after the

matched element node, as its immediate following sibling.
• Insert first child Inserts a new, empty element of the specified tag as the first child

of the matched element node.
• Insert last child Inserts a new, empty element of the specified tag as the last child

of the matched element node.
• Assign conditions Assignes the specified conditions to the matched element node

and its children. When adding condition tags to assign, the drop-down list is populated
based on condition tags found in the currently-active document. However, you may

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 2.3 39

specify any tag. If the Node Wizard attempts to assign a tag that does not exist in the
current document, the error report will indicate as such. For important notes on
conditional text, see “A word on conditional text” on page 44.

• Paste CB over elem Pastes the current contents of the Windows clipboard over the
matched element node, replacing the element. Clipboard contents may include text,
FrameMaker objects, and structural elements. You must copy the desired contents
onto the clipboard before running this action.

• Paste CB over contents Pastes the current contents of the Windows clipboard over
the contents of the matched element node, replacing the original contents but
preserving the element tag. Clipboard contents may include text, FrameMaker
objects, and structural elements. You must copy the desired contents onto the
clipboard before running this action.

• Paste CB at beginning Pastes the current contents of the Windows clipboard at the
beginning of the matched element node, as the first child. It does not replace any
existing content of the matched element. Clipboard contents may include text,
FrameMaker objects, and structural elements. You must copy the desired contents
onto the clipboard before running this action.

• Paste CB at end Pastes the current contents of the Windows clipboard at the end of
the matched element node, as the last child. It does not replace any existing content
of the matched element. Clipboard contents may include text, FrameMaker objects,
and structural elements. You must copy the desired contents onto the clipboard
before running this action.

• Paste CB before Pastes the current contents of the Windows clipboard directly
before the matched element node, as its immediate previous sibling. It does not
replace any existing content of the matched element. Clipboard contents may include
text, FrameMaker objects, and structural elements. You must copy the desired
contents onto the clipboard before running this action.

• Paste CB after Pastes the current contents of the Windows clipboard directly after
the matched element node, as its immediate followiing sibling. It does not replace any
existing content of the matched element. Clipboard contents may include text,
FrameMaker objects, and structural elements. You must copy the desired contents
onto the clipboard before running this action.

Attribute actions
As implied by the name, attribute actions involve attribute nodes. The variety and
flexibility of FrameSLT attribute manipulation, however, can make it difficult to understand
the more advanced capabilities of the plugin. This section attempts to describe the
fundamentals of attribute actions in detail, giving you the basic knowledge to understand
the bigger picture and possibilities for attribute manipulation. Please read this entire
section before using attribute actions in the Node Wizard.
Every attribute action operates on one or more attribute nodes. The particular attributes
on which actions operate fall into two categories:

• Specified attributes In the Node Wizard, you can directly specify attribute names
on which you want the action to occur. With specified attributes, it is not necessary for
the XPath expression to match attributes, although it can if you desire. When actions
are performed, for each XPath match, FrameSLT will simply look for the specified
attribute(s) on each matched element, and generate a warning if the attribute is not

Chapter 3 The Node Wizard and Other Utilities

40 FrameSLT 2.3

found. If the XPath matches attribute nodes, the same behavior will result, with
FrameSLT searching the parent element for the specified attribute.
In short, when an attribute action is performed on a specified attribute, any matched
attribute is generally not relevant, other than its contribution to the XPath query. The
attribute is acted upon based on the name specified in the Node Wizard.

• Matched attributes As an alternative to directly specifying attributes, attribute
actions can be performed on attributes matched by the XPath expression. Acting
upon matched attributes allows you to be much more precise about attribute
manipulation, because the XPath expression will control which attributes are acted
upon. Furthermore, it allows you the flexibility to use XPath wildcards to find attribute
candidates for the specified action. To indicate that an attribute action should be
performed on matched, versus specified, attributes, you should put the text
{xpath-match} in the Attributes box or simply leave it empty.

Tip: The Node Wizard Tutorial explores this subject in more detail and provides
hands-on examples. If these explanations do not make sense, the tutorial may help
you understand them better.

Note the following important items regarding specified versus matched attributes:
• You may combine matched and specified attributes in a single action. For example, if

both “Product” and “{xpath-match}” are listed in the Attributes box, the specified action
will occur on both the Product and the matched attribute node for each match, as
applicable.

• If you specify an attribute that is not found on the matched or nearest element node,
an error will occur, on an action-by-action basis.

• If you specify actions to occur on matched attributes, but your XPath does not match
attribute nodes, the attribute action will have no effect and will generally be
considered an error.

Futhermore, certain attribute actions inherently apply to both matched and specified
attributes, and therefore require both a specified attribute and an XPath expression that
matches attribute nodes. The following list describes the available attribute actions in
detail, noting specified versus matched attribute issues where appropriate.

• Add specified values Adds the specified values to the specified attributes in
addition to any existing values. Specified attributes may include “{xpath-match},”
which causes the specified values to be set on any attribute matched by the XPath
expression.

• Remove specified values Removes the specified values from the specified
attributes, if they currently exists. values. Specified attributes may include
“{xpath-match},” which causes the values to be removed from any attribute matched
by the XPath expression.

• Replace values with spec Replaces any current values of the specified attributes
with those specified in the dialog. All current values of these attributes are removed
first. Specified attributes may include “{xpath-match},” which causes the specified
values)to be replaced on any attribute matched by the XPath expression.

• Delete all values Clears all current values from the specified attributes, leaving
empty attributes. Specified attributes may include “{xpath-match},” which causes the
deletion of current values from all attributes matched by the XPath expression.

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 2.3 41

• Move value to elem text For all specified attributes, moves the current attribute
value to the parent element text, replacing any element text that previously existed.
The element/attribute pair on which this occurs is based on matches by the XPath.
For best results, only a single attribute should be specified, and it may be specified as
“{xpath-match},” causing text movement from the attributes matched by the XPath
expression. As a “move” operation, the value is physically moved and the attribute is
left empty. This action operates on the first attribute value only and is limited to 255
characters.

• Copy value to elem text For all specified attributes, copies the current attribute
value to the parent element text, replacing any element text that previously existed.
The element/attribute pair on which this occurs is based on matches by the XPath.
For best results, only a single attribute should be specified, and it may be specified as
“{xpath-match},” causing a text copy from the attributes matched by the XPath
expression. As a “copy” operation, the value is copied only and the original attribute is
unaffected. This action operates on the first attribute value only and is limited to 255
characters.

• Move elem text to value For the specified attributes, moves the parent element text
to the first attribute value, replacing any attribute values that previously existed.
Multiple attributes may be specified, although a single attribute specification is
generally recommended for management purposes. The element/attribute pair on
which this occurs is based on matches by the XPath. The specified attribute may be
specified as “{xpath-match},” causing text movement to the attributes matched by the
XPath expression. As a “move” operation, the value is physically moved and the
element is left empty. This action operates on the first attribute value only and is
limited to 255 characters.

• Copy elem text to value For the specified attributes, copies the parent element text
to the first attribute value, replacing any attribute values that previously existed.
Multiple attributes may be specified, although a single attribute specification is
generally recommended for management purposes. The element/attribute pair on
which this occurs is based on matches by the XPath. The specified attribute may be
specified as “{xpath-match},” causing a text copy to the attributes matched by the
XPath expression. As a “copy” operation, the value is copied from the element only
and the element is left as it was found. This action operates on the first attribute value
only and is limited to 255 characters.

• Move values to spec attr For each XPath match, moves the values found on the
matched attribute to the specified attribute. This action, therefore, requires that the
XPath expression to match attribute nodes, not element nodes. Furthermore, the
specified attribute should NOT be “{xpath-match}”, because the other end of the
transaction is already the matched attribute. Only a single attribute should be
specified, and any additional attributes will be ignored. As a “move” operation, the
value(s) are moved and the matched attribute is left empty. If the matched attribute
was empty originally, both attributes will be empty at the end of the operation.

• Copy values to spec attr For each XPath match, copies the values found on the
matched attribute to the specified attribute. This action, therefore, requires that the
XPath expression to match attribute nodes, not element nodes. Furthermore, the
specified attribute should NOT be “{xpath-match}”, because the other end of the
transaction is already the matched attribute. Only a single attribute should be
specified, and any additional attributes will be ignored. As a “copy” operation, the

Chapter 3 The Node Wizard and Other Utilities

42 FrameSLT 2.3

value(s) are copied only and the matched attribute is left as found. If the matched
attribute was empty originally, both attributes will be empty at the end of the operation.

• Move values from spec attr For each XPath match, moves the values found on the
specified attribute to the matched attribute. This action, therefore, requires that the
XPath expression to match attribute nodes, not element nodes. Furthermore, the
specified attribute should NOT be “{xpath-match}”, because the other end of the
transaction is already the matched attribute. Only a single attribute should be
specified, and any additional attributes will be ignored. As a “move” operation, the
value(s) are moved and the specified attribute is left empty. If the specified attribute
was empty originally, both attributes will be empty at the end of the operation.

• Copy values from spec attr For each XPath match, copies the values found on the
specified attribute to the matched attribute. This action, therefore, requires that the
XPath expression to match attribute nodes, not element nodes. Furthermore, the
specified attribute should NOT be “{xpath-match}”, because the other end of the
transaction is already the matched attribute. Only a single attribute should be
specified, and any additional attributes will be ignored. As a “copy” operation, the
value(s) are copied only and the specified attribute is left as found. If the specified
attribute was empty originally, both attributes will be empty at the end of the operation.

• Swap values with spec attr For each XPath match, swaps the values found on the
matched attribute with those found on the specified attribute. That is, the two original
value sets are exchanged between the two attributes. This action, therefore, requires
that the XPath expression to match attribute nodes, not element nodes. Furthermore,
the specified attribute should NOT be “{xpath-match}”, because the other end of the
transaction is already the matched attribute. Only a single attribute should be
specified, and any additional attributes will be ignored.

• Search and replace string For each XPath attribute match, performs a string
search and replace on existing values, using the specified strings. The search string
may represent a whole value or a string fragment within values, and the replace string
may be zero or more characters, with an empty replace string simply deleting any
instance of the search string. The search string is case-sensitive, and wildcards are
currently not supported. The operation is performed on attributes matched by the
XPath expression only, and is performed on all existing values of the respective
attribute.

• Remove invalid attribute For each XPath match, removes the specified attribute(s)
from the element if found to be invalid; that is, not defined by the EDD. Removal
includes removal of the attribute and all values on the matched element only.
Specified attributes may include “{xpath-match}”, which will cause the removal of the
attributes matched by the XPath expression. If any specified or matched attribute is
found to be valid, the action has no effect and will produce a warning as applicable.

IMPORTANT NOTE
The following actions move text from an element to an attribute, or vice-versa:

• Move value to elem text
• Copy value to elem text
• Move elem text to value
• Copy elem text to value

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 2.3 43

If the original text string to be moved or copied is empty, the action will only proceed if you
have your FrameSLT preferences set as such (FrameSLT > Local Preferences). If you
choose to allow the moving or copying empty strings, the result will be the deletion of all
text at the target. For example, if the action “Copy value to elem text” is performed on an
attribute with no values, the result will be the deletion of all current contents of the
element, if any. For more information on setting this preference, see “Preferences” on
page 10.

Important warning about node actions
Node actions, especially when performed as a batch with the “Perform All Actions” button,
can cause major changes to your structure and content. Do not use this function unless:

• You are 100% sure that you understand what your XPath and the specified actions
are going to do
and/or

• Your files are securely backed up
Backups are recommended in any case. Remember that you can also close and reopen
your files afterwards WITHOUT SAVING CHANGES to restore your files.
If you remember nothing else, remember this: A SINGLE CLICK OF THE “PERFORM
ACTIONS ON ALL” BUTTON COULD DELETE EVERY SINGLE CHARACTER OF
CONTENT OUT OF AN ENTIRE BOOK WITHIN SECONDS, IF YOUR PARAMETERS
ARE NOT SET UP PROPERLY. Use Node Wizard at your own risk and DO NOT SAVE
CHANGES unless you are positive that they are what you intended!

“Perform Action(s) and Find Next” button
This button has the effect of clicking Perform Action(s) then Match Next. Note that
some actions, such as element deletion, unwrapping, and promotion/demotion, alter the
structure tree significantly enough that the original XPath context is destroyed and the
query cannot continue with this button.

Query behavior during “Perform Actions On All” operations
When you click “Perform Actions On All, the Node Wizard will query the active document
for all possible nodes that match the specified XPath expression and store them in
memory. After the node list is complete, it then steps through the list performing the
specified action(s) on each node. If the operation is performed on an entire book, this
process happens independently for each document in the book.
For this reason, element actions such as deletion, unwrapping, promotion, and demotion
can be reliably performed during “Perform Actions On All” operations, with proper setup.
This behavior differs somewhat from using the “Match Next” and “Perform Action(s)”
button, because the the “Match First” and “Match Next” buttons do not store all possible
matches from the outset. Rather, they go one match at a time, each time considering the
current context as it exists in the document. Therefore, certain element actions may
disable the “Match Next” button when querying a node at a time.

Element actions that preclude attribute actions
The following element actions cannot be combined with an attribute action:

• Unwrap—After unwrapping an element, no attributes could be available for an action.

Chapter 3 The Node Wizard and Other Utilities

44 FrameSLT 2.3

• Delete element—After deleting an element, no attributes could be available for an
action.

• Paste clipboard contents over element—This action replaces the original element and
creates too much uncertainty to safely attempt attribute actions.

Wrapping elements and performing an attribute action
If you combine a “wrap” element action and an attribute action, the attribute action is
performed on the element that was originally matched by the XPath expression, not the
new, “wrapping” element. For example, if your expression is set to match Body elements,
and the element action is set to wrap them in Section elements, any attribute actions
will be performed on the original Body elements, not any new Section elements.

A word on conditional text
If you have hidden conditional text in your document, it will not be affected by any Node
Wizard function. In essence, it is invisible to FrameSLT. If you use conditional text, be
sure to manage it carefully when conducting Node Wizard activity.
You can remove all assigned condition tags from your visible text by using the following
XPath expression:

//*

...combined with the “Assign conditions” element action, but with no condition tags
specified.

Node Wizard scripting
Node Wizard scripting allows you to automate sequences of element and/or attribute
actions throughout an entire document or book, without the need to configure the Node
Wizard dialog each time. A script can perform any action supported by the Node Wizard
and more, in any sequence and with any frequency. You may have any number of scripts
defined, with any number of events.
With the capacity to nest events with cascading XPath context, you can perform very
complex document alterations, including the ability to retrieve content from any attribute
or element and move it to any other attribute or element. For more information on nesting
events, see “About subevents” on page 45.
Node Wizard scripts are launched using the scripts dialog at FrameSLT > Node Wizard
Scripts. Scripts may also be initiated by FrameScript, FrameAC, or any other API client
through the FrameSLT external call interface. For more information, see “RunNWScript”
on page 127..
Scripts can also be set to automatically run after key events such as document opening
and EDD imports. For more information on autorunning Node Wizard scripts, see
“Autorun triggers” on page 50.
Tip: FrameSLT includes a tutorial on Node Wizard scripting. It may be a good place to

start for understanding how it works.
Note: LIKE NODE WIZARD ACTIONS, A SINGLE SCRIPT EVENT COULD DELETE

EVERY SINGLE CHARACTER OF CONTENT OUT OF AN ENTIRE BOOK
WITHIN SECONDS. USE THIS SCRIPTING AT YOUR OWN RISK. KEEP
BACKUPS AND DO NOT SAVE ANY FILES UNTIL YOU ARE SURE THAT A
SCRIPT IS DOING WHAT YOU INTEND IT TO. A SINGLE MISTAKEN

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 2.3 45

CHARACTER IN A SCRIPT COULD CAUSE IT TO DO SOMETHING
COMPLETELY UNEXPECTED AND POTENTIALLY CATASTROPHIC,
ESPECIALLY IF YOU SAVE THE RESULTS WITHOUT VERIFYING THEM.

About Node Wizard scripts
A script is a series of one or more events that run in sequence. Each event is much like a
single snapshot of the Node Wizard, comprised of an XPath expression and any desired
element/attribute actions. When a script runs, each event runs independently and
behaves exactly as if you had manually configured the Node Wizard with the respective
settings and clicked Perform Actions On All. When a script is complete, FrameSLT
produces the same status report that you see after a Node Wizard “Perform Actions On
All.”
Because events are like snapshots of the Node Wizard, a familiarity with the Node Wizard
should be all you need to successfully write and run scripts. For more informatioin on
writing and editing scripts, see “Writing and editing scripts” on page 48. For more details
on the behavior of element and attribute actions themselves, see “Element actions” on
page 38 and “Attribute actions” on page 39.

About subevents
In a Node Wizard script, you can nest events using the SubEvent element at the end of
any NWScriptEvent or SubEvent element branch. A subevent is run for each match of
the parent event or subevent XPath, with the XPath query launched from the context of
that match. There is no limit to the depth of subevent nesting.
To use subevents successfully, it is important to understand the concept of cascading
XPath context and the looping aspects of a parent event. As an example, assume that
you have a parent event with the following XPath:

//Section/@MyAttribute

...and a subevent with the following XPath:
Body

Each time the parent event XPath matches a MyAttribute attribute, it will perform its
respective actions and then launch the subevent, whose XPath query will start from the
element context of that match. In summary, therefore, note the following:

• A subevent is launched once for each match of the parent event XPath, with a new
subevent XPath query performed each time.
Note: If a subevent deletes an element in the list of parent event matches, the

script will not launch any subevents for that iteration. This behavior is
necessary because the context of a non-existent node can cause all nature
of unpredictable behavior within a subevent. Therefore, you should be very
careful that a subevent won’t delete or unwrap any element that the parent
event XPath could potentially match.

• The XPath query of a subevent starts from the context of the parent event match. For
this reason, subevent expressions do not require the “go-to-root” axis (/) like top-level
events. You can use this axis for subevent expressions, however, understanding that
the context passed to the subevent will then be overridden and therefore irrelevant.

• A parent event will perform its own element/attribute action(s), if any, before passing
the context to the subevent and launching it.

Chapter 3 The Node Wizard and Other Utilities

46 FrameSLT 2.3

• If a parent event makes no matches, a subevent will never run.
• Only the element node context is passed to a subevent, even in the case of an

attribute match. This is important to allow further contextual queries within subevents
when a parent event matches attributes. Technically, the context of an attribute is a
dead-end from which no further navigation is possible, so a rigid adherence to this
context would limit the ability to move away from an attribute context and perform
actions elsewhere. If you need to work on a matched attribute again within a
subevent, set up your XPath expression to match it again.

• Any event can have zero, one, or more subevents, which must be located at the end
of its element branch.

Subevent nesting in conjuction with clipboard features provide a very powerful and
unique transformation engine for structured FrameMaker documents. You can copy
content from any element or attribute in a parent event and paste it anywhere else with a
subevent. Use it with caution.

Element/attribute actions supported by scripts only
This section describes element and attribute actions that are supported by scripts but not
by the Node Wizard dialog box. Certain actions are not useful without the ability to nest
events and provide multiple XPath expressions. For descriptions of all other actions that
are supported by the dialog box, see “Element actions” on page 38 and “Attribute actions”
on page 39.
Element actions:

• Copy_elem_to_CB - Copies the entire matched element to the clipboard, including
all contents and descendant elements.

• Copy_elem_contents_to_CB - Copies the contents of the matched element to the
clipboard, including all descendant elements, but does not copy the element itself.

Note: “Copy” actions are typically used in conjunction with a subevent that pastes the
content somewhere else.

Attribute actions:
• Copy_all_values_to_CB - Copies all values of the matched attribute to the

clipboard. The XPath must match an attribute for this action to work. If values are
copied and later pasted to another attribute, they will look exactly as they did at the
original attribute. If multiple values are copied and later pasted as element text, they
will be pasted as a space-delimited (tokenized) list.

• Copy_first_value_to_CB - Copies the first value of the matched attribute to the
clipboard. The XPath must match an attribute for this action to work. This action
considers whitespace as an attribute value delimiter, in support of tokenized lists.

• Paste_CB_to_matched_attr - Pastes the current contents of the clipboard to the
contents of the matched attribute. The XPath must match an attribute for this action to
work. If the clipboard currently contains text and/or element content, any text will be
truncated to 254 characters as applicable and pasted as the first and only attribute
value.

• Paste_CB_at_beg_of_matched_attr - Prepends the current contents of the
clipboard to the contents of the first value of the matched attribute. The XPath must
match an attribute for this action to work. This action includes the following
contingencies:

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 2.3 47

- If the attribute currently contains no values, the action behaves like the
Paste_CB_to_matched_attr action.

- If the attribute contains multiple values, the action only acts upon the first value.
- If the clipboard contains multiple attribute values, the action only prepends the first

value.
• Paste_CB_at_end_of_matched_attr - Behaves identically to
Paste_CB_at_beg_of_matched_attr , except that the value is appended, not
prepended.

About the script settings file
The key component of the scripting feature is the “script settings” file, where all scripts are
stored and subsequently referenced. This file is named:

WS_Scripts.fm

...and resides in the WestStreet subfolder in your FrameMaker installation area. This
file is a structured document that contains all the definitions and parameters of your
currently active and inactive scripts.
Note the following about this file:

• This file is the only interface for editing scripts. FrameSLT currently has no graphical
support for script editing. For more information on working in this file, see “Writing and
editing scripts” on page 48.

• This file must remain in the WestStreet folder with its original name, otherwise
FrameSLT will not be able to find it. In the future, we may enhance FrameSLT such
that the location of this file is customizable, but this effort will only be undertaken
based on user demand. If you have a need for this enhancement and/or more
flexibility with script file location, please contact West Street.

• You should not alter the EDD of this file, because FrameSLT is expecting to find
certain elements in certain places. If you have a need to alter the EDD, please contact
West Street first, because we can advise you of what will and will not break the
scripting process.

Running Node Wizard scripts within FrameMaker
All scripts and events are run through the scripts dialog, accessible by selecting
FrameSLT > Node Wizard Scripts. This dialog contains the following features and
controls:

Script control Description
Active scripts box Lists all currently-active scripts in the scripts settings

document. For more information on active vs. inactive
scripts, see “General settings” on page 49.

Script events box Lists all events for the selected script. If the event has a
name, the name will be listed. For more information on
event names, see “Event name and description” on
page 52.

Chapter 3 The Node Wizard and Other Utilities

48 FrameSLT 2.3

Note: During each script/event run, FrameSLT must walk through the script settings
file to get the parameters. If the file is currently open, these activities will cause
the file to think that it has unsaved changes, even if you have not made changes
yourself. Therefore, you may be prompted to save changes when you close the
file, even if you didn’t make any.

Writing and editing scripts
All script writing and editing occurs in the script settings file. For more information on file
naming and its location, see “About the script settings file” on page 47.
The script settings file is a structured FrameMaker document and must be edited within
FrameMaker. It uses structural markup to define scripts, similar to how an EDD uses its
own element names to provide structure rule data. For these reasons, you do not need to

Script description and
Event description

Displays descriptions for the selected script and event, as
applicable. If a script or event has no description, the
respective box will be grayed out. For more information on
script and event descriptions, see “Script name and
description” on page 49 and “Event name and description”
on page 52.

Run Script Runs the selected script on the currently-active document
or book.
Tip: If you have the script settings file open for editing,

be careful not to accidentally run the script on the
settings file itself.

Check Script Runs basic error checking on the selected script, identical
to the error checking that occurs when you run a script.
This button does not run the script.

Jump To Elem For the selected script or event respectively, jumps to the
associated element in the script settings file. This button is
only applicable if the script settings file is currently open.

Run Event Runs the selected event, independently of any other
events. With respect to the parameters in the script
settings file, this button is similar to the “Perform Actions
On All” button on the Node Wizard.
Tip: If you have the script settings file open for editing,

be careful not to accidentally run the event on the
settings file itself.

Check Event Runs basic error checking on the selected event. This
button does not run the event.

Open/Close Scripts File Opens/closes the script settings file for editing. When the
file is open, you can still run any scripts in the file. Also,
the scripts dialog will update itself automatically when you
make changes to scripts, as applicable.

Script control Description

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 2.3 49

learn any kind of scripting language. For the most part, you need only to open the
document and follow the guidance of the element catalog.
The following sections describe the details of script settings file that are not readily
apparent from the file markup alone. To see what a fully constructed script looks like, you
can look at the sample script in the file that shipped with FrameSLT. This script is
designed for use with the Node Wizard Scripts Tutorial, which is likely your best resource
for gaining an overall view of script settings file behavior and construction.
Note: The settings file EDD is intended to guide you through the script writing process

and prevent errors. If your settings file is valid against its EDD, you are at least
guaranteed that all required elements are in place and that none are functionally
missing. However, if you use the “paste clipboard” element actions, it is likely
that you will be putting content in the file that violates its internal EDD. For this
reason, FrameSLT does not require the file to be valid before running scripts.
For more information on clipboard-based actions and the script settings file, see
“Element action” on page 52.

Highest level elements
The scripts document must have a highest-level element of WS_Scripts, with a child
NodeWizardScripts and each script wrapped in a NodeWizardScript element. No
other elements should appear at these levels.

Script name and description
The first child of a script element must be a NWScriptName element, whose text
contents represent the name of the script. All scripts must have a unique name. Following
the name, an optional description may be wrapped in a NWScriptDescription
element. If no description element is provided, the “description” box in the scripts dialog
will be grayed out when the script is selected in the scripts dialog.

General settings
The script element must contain a NWGeneralSettings element, which includes the
following subelements:

Chapter 3 The Node Wizard and Other Utilities

50 FrameSLT 2.3

Note: For “yes/no” Boolean options, the default is always “no.”

Autorun triggers
The script element may contain an optional AutorunTriggers element, which specifies
when the script should automatically run. The default for each trigger is always “no,” and
the absence of an AutorunTriggers element will disable all autorunning for the script.
Note: Script autorunning must be globally enabled in your FrameSLT preferences

before any script will autorun. For more information, see “Preferences” on
page 10.

Each subelement, such as OnDocumentOpen and/or OnEDDImport indicates a specific
event that should trigger the script to run. There must be a Yes subelement to activate
autorunning for the respective event. Alternatively, you may insert an IfXPathMatch
element to control autorunning based on an XPath match. The text of IfXPathMatch
should represent a valid XPath expression, and if the expression makes a single match
on the respective document, the script will run at the respective trigger.

Element name
Required/
optional Description

ScriptIsActive Required Indicates whether the script is active or
not by the presence of a Yes or No
subelement. Inactive scripts do not
appear in the scripts dialog, and are
intended as a mechanism for storing
draft/unused script data without having
to delete it.
Note: The Yes element must be

present to activate the script.
Otherwise, the script will be
assumed inactive.

ReportElemActionErrors Optional Indicates whether to perform reporting
on errors and warnings associated with
element actions. This option is
functionally identical to the “Report
errors” checkbox in the element action
area of the Node Wizard. There must
be a Yes subelement to enable the
option.

ReportElemActionErrors Optional Indicates whether to perform reporting
on errors and warnings associated with
attribute actions. This option is
functionally identical to the “Report
errors” checkbox in the attribute action
area of the Node Wizard. There must
be a Yes subelement to enable the
option.

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 2.3 51

As an example, assume you have a script that you want to run when documents are
opened, but only on documents that have a highest-level element of Chapter. Your
script settings might appear as follows:

The following table describes the individual events for autorunning in more detail.

Note the following important items about autorunning Node Wizard scripts:
• You should be very cautious when setting up scripts to autorun. It is easy to forget

about them and you may find yourself wondering why strange things keep happening
to your files, when it is actually a Node Wizard script running. Wherever possible, take
advantage of the IfXPathMatch filter to restrict script autorunning to the desired
files.

• Autorun scripts do not produce any warnings or error reporting, other than the
element/action error report if the script specifies as such. If a script encounters an
error that prevents it from proceeding, it will simply abort.

• Autorun settings apply to documents only. Scripts will not autorun on a book.
• If an event occurs that triggers both an autorun script and conditional text assignment

with the conditional text management features, the conditonal text assignment will
occur first. For more information on conditional text management features, see
“FrameSLT condition management” on page 58.

• As with all Node Wizard script activities, no changes are saved afterwards. You can
undo the effects of any script by closing the document without saving changes.

Script event settings
Script event settings define the actual work performed by the script when it is run. A script
contains one or more events, each of which is wrapped in its own NWScriptEvent
element. During a script run, FrameSLT steps through NWScriptEvent elements in

Element name Event description
OnDisplayRefresh After the screen is refreshed using the Ctrl+L shortcut.

OnDocumentOpen After a binary FM document is opened. The results of
the script will not be saved.

OnEDDImport Following the import of element definitions through the
menu path File > Import > Element Definitions.

OnMarkupOpen After an XML, SGML, or MIF file is opened. The results
of the script will not be saved.

Chapter 3 The Node Wizard and Other Utilities

52 FrameSLT 2.3

order, performing actions as instructed by the event settings. If an event contains
subevents, these events are also run as applicable before proceeding to the next event.
The following sections describe the settings associated with a single event.

Event name and description
The event name (EventName) and description (EventDescription) are optional. If no
name is provided, the event shows as “{no name}” in the scripts dialog. If no description is
provided, the description box will be grayed out when the event is selected. Although you
can specify this information for subevents as well, the scripts dialog box shows this
information for top-level events only.

XPath expression
All events must have a valid XPath expression, represented as the text of an
XPathExpression element. Like Node Wizard “Perform Actions On All” actions, the
expression for all top-level events must start with a forward slash (/) to begin the query at
the structural root. However, this rule does not apply to subevent expressions, because a
subevent always receives a starting context from the parent event. You may still force a
subevent expression to the root with a forward slash, but it is not required.
The XPathExpression element provides two attributes which you may use to control
the extent of matching:

• MaximumMatches - Specifies the maximum number of nodes that you want the XPath to
match, in document order. Zero or no value indicates to match all possible nodes.

• SkipFirstMatches - Specifies the number of matched nodes you want to skip before
applying any actions and/or subevents. For example, if you specify 3 and the XPath
matches 10 nodes, the actions and/or subevents will only be applied to nodes 4-10.
Nodes 1-3 will be completely ignored. Zero or no value indicates normal behavior on
all matched nodes.

If the two settings are used together, the count of maximum matches begins after the
skipped matches. For example, if you only want to apply actions and/or subevents to the
fifth matched node in document order, you would specify the following:

• MaximumMatches = 1
• SkipFirstMatches = 4

Flows to process
An event may include a FlowsToProcess element, which indicates which flow(s) the
event should process, either the main flow only or all structured flows in the document. In
the absence of this element, the default behavior is to process the main flow only. If the
XPath expression is a contextual expression in a subevent, this setting is not relevant
because all queries will automatically begin from the context passed down from the
parent event.

Element action
For each event, an optional ElementAction element with the appropriate subelements
defines an element action to occur for each match of the XPath expression. The action
subelements follow the same naming convention as the Node Wizard action drop-down
list and perform the same activities. For detailed descriptions of element action behaviors,

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 2.3 53

see “Element actions” on page 38 and “Element/attribute actions supported by scripts
only” on page 46.
In some cases, you need only insert elements to define actions for an event, because the
element markup provides FrameSLT enough information. In other cases, you must type
in the settings file to supply additional information. The following table summarizes
requirements for element actions in the scripts file:

Action element Settings file requirement
Copy_elem_contents_to_CB

Copy_elem_to_CB

Delete_element

Delete_contents

Demote

Move_down

Move_up

Promote

Unwrap

Only the action element is required. The action will
occur on the matched element node(s), and no
further parameters are necessary.

Insert_elem_before

Insert_elem_after

Insert_first_child

Insert_last_child

Retag_as

Wrap_element_in

Wrap_contents_in

For actions that require a new element or a new
element tag, you must type the new tag name as
the text contents of the action element. Remember
that the specified element must appear in the
respective document’s EDD for these actions to
work, and that element tags are case-sensitive.

Chapter 3 The Node Wizard and Other Utilities

54 FrameSLT 2.3

Paste_CB_after

Paste_CB_at_beginning

Paste_CB_at_end

Paste_CB_before

Paste_CB_over_contents

Paste_CB_over_elem

For actions that paste from the clipboard, the
clipboard is handled as follows:

• If the action element in the script contains
absolutely no content, the action will paste the
existing clipboard content without altering it.
For this type of action to be useful, you must
either populate the clipboard before running
the script or combine “copy” actions with
subevents to populate it during the script. For
more information on subevents, see “About
subevents” on page 45.

• If the action element in the script contains any
content, including a single space, during
processing FrameSLT will select the entire
content of the action element and copy it to the
clipboard for use with the specified element
action. You may therefore use any content that
can reside in a FrameMaker document,
including text, elements, markers, anchored
frames, etc.

Note that the script settings file is a structured FM
document, whose structure is defined by its
internal EDD. Therefore, if you place content in any
element that violates that EDD, it will appear as
invalid. If you are using clipboard-based element
actions to paste in structured content, it is very
likely that you will have data in your scripts settings
file that makes it invalid, simply because your
target documents are unlikely to use the same
EDD. For this reason, invalid content is acceptable
within a script settings file for clipboard-based
element actions.
To place invalid structured content into the settings
file, you will need to paste it, because you won’t be
able to insert it with the element catalog.
Note: Invalid content in the settings file will

appear as red, and will lack any expected
formatting because the settings file has
no instructions for formatting it. Once it is
pasted into another document with a valid
EDD, however, it should immediately
assume the formatting you expect.

Action element Settings file requirement

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 2.3 55

Attribute action
For each event, an optional AttributeAction element with the appropriate
subelements defines an attribute action to occur for each match of the XPath expression.
The action subelements follow the same naming convention as the Node Wizard action
drop-down list and perform the same activities. For detailed descriptions of attribute
action behaviors, see “Attribute actions” on page 39.
With all actions, you must specify some additional information with the action element,
normally to indicate which attribute(s) and perhaps value(s) the action should be
performed on. The following table summarizes requirements for attribute actions in the
scripts file:

Assign_conditions For conditional text assignment, you must
enumerate each desired condition as the text of an
individual Condition subelement. Keep in mind
that condition names are case-sensitive, and
should represent valid conditions defined in the
template(s) on which the script will be run.

Action element Settings file requirement

Action element Settings file requirement
Copy_all_values_to_CB

Copy_first_value_to_CB

Only the action element is required. The action
will occur on the matched attribute(s), and no
further parameters are necessary.

Add_specified_values

Remove_specified_values

Replace_values_with_spec

These actions require that you specify one or
more attributes for the action and one or more
values, represented as the text content of
Attribute and Value subelements
respectively. Keep in mind that attribute names
and values are case-sensitive.
xpath-match subelements are permitted
under Attribute elements. See the note
below.

Delete_all_values

Remove_invalid_attribute

These actions require you to specify one or
more attributes, but no values are necessary
because values and attributes are deleted, not
set.
xpath-match subelements are permitted
under Attribute elements. See the note
below.

Chapter 3 The Node Wizard and Other Utilities

56 FrameSLT 2.3

Move_value_to_elem_text

Copy_value_to_elem_text

Move_elem_text_to_value

Copy_elem_text_to_value

These actions require a single Attribute
subelement to specify which attribute the
action should act upon. These actions are
designed to operate with a single attribute only,
with a single value.
xpath-match subelements are permitted
under Attribute elements, because these
actions can act upon matched or specified
attributes. See the note below.

Move_values_to_spec_attr

Copy_values_to_spec_attr

Move_values_from_spec_attr

Copy_values_from_spec_attr

Swap_values_with_spec_attr

These actions require a single Attribute
subelement to specify which attribute the
action should act upon. These actions are
designed to operate with a single attribute only,
with a single value.
These actions always perform a transaction
between a specified attribute and an
XPath-matched attribute. Therefore, your
XPath expression should be constructed to
match attributes, and the specified attribute
should appear under the action element. The
xpath-match subelement is not applicable in
this case, because the action itself already
indicates that the matched attribute will be
used for one side of the transaction. If you were
to use xpath-match as the specified
attribute, the action would have no effect
because the transaction would attempt to occur
between the matched attribute and itself.

Action element Settings file requirement

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 2.3 57

Note: Under Attribute elements, you may type an attribute name, or you may insert
an xpath-match element to indicate the attribute(s) matched by the XPath
expression. For more information about specified attributes versus matched
attrributes, and details about attribute actions on matched attributes, see
“Attribute actions” on page 39.

Search_and_replace_string This action requires you to specify a search
string (SearchString) and optionally a
replacement string (ReplaceString). If you
do not specify a replacement string, all
instances of the search string will be deleted.
This action always occurs on XPath-matched
attributes. Therefore, no attribute specification
is required.
When this action is performed in the Node
Wizard, the dialog allows you to specify
multiple search and replace strings. Although
allowed, performing actions in this manner is
discouraged, and the scripts setting file only
allows a single SearchString and
ReplaceString element. If you have multiple
search and replace activities to conduct, use
multiple events.

Paste_CB_to_matched_attr For actions that paste from the clipboard, the
clipboard is handled as follows:

• If the action element in the script contains
absolutely no content, the action will paste
the existing clipboard content without
altering it. For this type of action to be
useful, you must either populate the
clipboard before running the script or
combine “copy” actions with subevents to
populate it during the script. For more
information on subevents, see “About
subevents” on page 45.

• If the action element in the script contains
any content, including a single space,
during processing FrameSLT will select the
entire content of the action element and
copy it to the clipboard for use with the
specified attribute action. For attributes,
you should supply text content only.
Elements, objects, and other such items
are not applicable to attribute values.

Action element Settings file requirement

Chapter 3 The Node Wizard and Other Utilities

58 FrameSLT 2.3

FrameSLT condition management
FrameSLT includes a comprehensive XPath-based utility for conditional text
management. Using this utility, FrameSLT can automatically apply conditional text based
on structural metadata during actions such as:

• Inserting and wrapping elements
• Editing attributes
• Opening documents
• Updating books

Because the conditional text management uses XPath, you can automatically associate
conditions with your content based on element names, hierarchy, attribute values, and
more. All condition assignment occurs at the element level, but the contextual evaluations
may use any aspect supported by FrameSLT XPath. In many respects, this feature
compensates for the absence of structure-based condition association in current EDD
formatting capabilities.
Note: The dedicated condition management features have some overlap with the

Node Wizard dialog and associated scripting capabilites, which also provide
conditional text assignment based on structural markup. The important
distinction is that the dedicated features are intended as a real-time, responsive
authoring tool, while Node Wizard features are generally considered batch or
post-processing activities. The two may be used in conjunction, but you may find
it easier to manage your processes if only one or the other is used for conditions
management.

Condition management settings
All condition management settings are accessed by selecting FrameSLT > Condition
Management Settings. The following tables describe these settings in detail.

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 2.3 59

General condition management settings
The general settings apply globally to auto-conditionalization features, as follows:

Auto application settings
The auto-application settings allow you to specify the XPath expressions for matching the
elements to be conditionalized. Each expression contains its own independent set of

Setting Description
Automatically apply
conditions after...

Causes FrameSLT to assign conditions as specified
by the Auto application settings below, after the
selected actions occur. Note that element and
attribute actions cause condition application on the
selected element, while the other actions will apply
conditions throughout the whole document or book.

Enable the following
warnings...

Enables message box warnings, as follows:
• When a non-existent condition is

found This is the warning presented when
FrameSLT attempts to apply a specified
condition that does not exist in the current
document. Note that this warning is always
disabled for document- and book-wide condition
application.

• When a condition is auto-created This is the
message presented when FrameSLT attempts
to apply a non-existent condition, and then
automatically creates it to complete the action.
In the application settings below, you can
enable auto-creation on an
expression-by-expression basis.

Note: In the editor, these settings use
“three-state” checkboxes, which have an
intermediate “half-checked” state. When
half-checked, the warning is enabled for
one occurrence only, after which it will not
appear again during the current
FrameMaker session.

When applying conditions,
show all conditions first

Sets all conditions to be shown before attempting to
automatically apply conditions. This setting is only
applicable to document- and book-wide condition
application. This setting is recommended, because
auto-conditionalization on content with hidden
conditional text can produce unpredictable results.

Chapter 3 The Node Wizard and Other Utilities

60 FrameSLT 2.3

parameters that affect its behavior, including the conditions to apply if the expression is
matched.

Setting Description
Expressions XPath expressions for matching elements to be

conditionalized. Attempted matching always occurs
in the order the expressions are listed. And, each
expression has its own independent set of
conditionalization parameters which appear to the
right.
When expressions are added or edited, they are
parsed for validity first. Invalid expressions cannot
be used and are therefore not permitted. You can
use the error report to help debug your XPath
expressions.
Note: Due to the internal processing model, all

XPath expressions are automatically
enclosed within a self::*[] expression
internally. This extra portion is not visible in
the editor, but will appear in the error
report. If you use the error report to debug
expressions, keep in mind that the
expression will show this portion added.

For examples of valid expressions, see “Examples
of expressions and settings” on page 62.

Settings are active Enables the selected expression. If disabled, the
expression and associated settings are completely
ignored by FrameSLT processing, but the settings
will remain stored for later.

Clear existing conditions If the selected expression is matched, causes
FrameSLT to remove any existing conditions on the
respective element before applying the specified
condition(s). If this setting is not checked,
FrameSLT will instead attempt to add the specified
condition(s) to any existing conditions.
Note: This setting is recommended, because

adding conditions may be unreliable if
existing conditions are not uniformly
applied across the entire element.

Create conditions if
necessary

If the selected expression is matched, causes
FrameSLT to create any specified conditions that do
not currently exist in the document. Auto-created
conditions attempt to assume the color “Red,” if the
color exists in the document. Otherwise, the new
condition will have no condition indicator.

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 2.3 61

Processing details
When an element is auto-conditionalized, the expressions are evaluated in the order that
they appear in the settings editor. FrameSLT will stop at the first expression that matches,
if any, and ignore the rest.
When you invoke auto-conditionalization at a document level, each element is evaluated
independently in logical order from the highest-level element through the ends of all
branches. Document-level auto-conditionalization operates on all structured flows,
including master and reference page flows.

Document- and book-wide actions
In the main FrameSLT menu, you can find commands for auto-conditionalizing
throughout an entire document or book. The menu also includes a command for clearing
all conditions. This command removes conditional text assignment only and does not
delete any content or actual condition tags. If any content is hidden when this command is
run, it is unaffected. This command removes all conditions assigned, whether by
FrameSLT or not.
Note: Both commands operate on all structured flows.

Element-level actions
In your condition management settings, you can set FrameSLT to automatically
conditionalize during element actions such as insertion and wrapping, and attribute
editing. These actions affect the respective element only, and do not evaluate any

Conditionalize parent element
also

If the select expression is matched, causes
FrameSLT to apply the specified condition(s) to the
parent element as well. This setting is useful for
auto-conditionalizing elements during element
insertion that use EDD auto-insertions. When
expressions are evaluated during element insertion,
only the last-inserted element is evaluated.
For example, assume you have a Section
element that automatically inserts a Heading
element. Also, assume that you would like
Section elements to be auto-conditionalized upon
insertion. Because the Heading element is always
the last element inserted, it is the only element that
will be evaluated. Therefore, you can use this
setting in conjuction with a Heading-based XPath
expression to auto-conditionalize Section
elements.
Tip: See “Examples of expressions and settings”

on page 62 for an example.

Conditions The conditions to apply if the selected expression is
matched. These condition names must be specified
exactly as they appear in your template, including
case.

Setting Description

Chapter 3 The Node Wizard and Other Utilities

62 FrameSLT 2.3

descendant elements. For example, if you wrap several elements in a Section element,
only the Section element is auto-conditionalized, with all child elements remaining
unprocessed.
Tip: If you would like to auto-conditionalize an element and all descendant elements,

use the Apply Conditions command in the right-click menus.

Examples of expressions and settings
In all cases, auto-conditionalization occurs at the element level, such as the element you
just inserted, or the element currently under evaluation during a document-wide action. It
always occurs one element at a time, with any given element evaluated independently
from the context of itself. When an expression matches, the specified conditions are
applied to that element, according the settings associated with that expression.
Therefore, your XPath expressions should be set up to match some element, or perhaps
multiple elements.
Note: The remaining discussion assumes some familiarity with XPath, which is

necessary for the construction of auto-conditionalization expressions. If you are
not familiar with the XPath standard, consider reviewing “Chapter 2
About FrameSLT XPath” on page 17 first.

All evaluations begin from the context of the element under evaluation. Therefore, the
most basic method for matching elements is by name, using the self:: XPath axis. For
example, the following expression will match all Body elements, regardless of context or
other factors:

self::Body

This expression says literally, “If I am myself, and my name is Body, then match.” With
this expression, any Body element in the document will match, and the associated
conditions applied. For example, if your general settings specify auto-conditionalization
during element actions, all Body elements will receive the specified condition(s) when
inserted.
You can also use conjunctions within XPath expressions to denote multiple possibilities.
For example, the following expression:

self::Body or self::BulletItem

...will match all Body and BulletItem elements.
Within the scope of FrameSLT XPath support, you can also use predicate node tests for
detailed contextual evaluations. For example, the following expression will also match a
Body element, but only if it has a Product attribute set to “MyProduct”:

self::Body[@Product="MyProduct"]

The following table illustrates several more sample expressions.

Expression Description
self::Body or self::Para or self::Note Matches all Body, Para,

and Note elements.
self::Body and self::Para Matches no elements,

because an element cannot
be both a Code and a Para
element.

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 2.3 63

self::Body[@Product] Matches any Body element
with a Product attribute,
regardless of the attribute
contents.

self::*[@Product] Matches any element with a
Product attribute,
regardless of the attribute
contents.

self::Body[@Product="ProdA" or @Product="ProdB"] Matches any Body element
with a Product attribute set
to either “ProdA” or “ProdB”.

self::Body[@Product!=""] Matches any Body element
with a Product attribute
with any specified value.

@Product="ProdA" Matches any element with a
Product attribute set to
“ProdA”.

parent::Section Matches any element that is
a direct child of a Section
element.

ancestor-or-self::Section Matches any Section
element, and any element
with a Section ancestor.

ancestor::Table[@Output="Print"] Matches any element that is
a descendant of a Table
element, whose Output
attribute is set to “Print”.

ancestor::*[@Output="Print"] Matches any element that
has any ancestor element
whose Output attribute is
set to “Print”.

Body Matches any element that
has a child Body element.

self::Section[@Product="ProdA" or Body] Matches any Section
element that has a
Product attribute set to
“ProdA”, or has a child Body
element.

Expression Description

Chapter 3 The Node Wizard and Other Utilities

64 FrameSLT 2.3

For more information on FrameSLT and XPath, see “Chapter 2
About FrameSLT XPath” on page 17.

Important note about conditions management features
versus the Node Wizard

With FrameSLT, you can manage conditions with the conditions management features
and/or Node Wizard features, including Node Wizard scripting. It is important to note the
differences between the two, such that you can make a practical decision about which is
more appropriate for your situation.
If you require a conditions management tool that is author-focused and responds locally
as edits are made to a document, the dedicated conditions management features may be
more appropriate. The XPath expressions that the dedicated features use are always
“current-element” focused, in that they always assume a “to-self (self::) starting context.
Whether during authoring activities or full document-wide sweeps, all condition
assignment focuses on a single element at a time, looking at its immediate context with
regards to the specified XPath evaluation expressions. Therefore, condition management
occurs more on an element-by-element contextual basis, which is a generally friendlier
environment for authors.
Node Wizard activites, on the other hand, rely on overreaching XPath expressions to
navigate processing throughout a document, and typically are used as a post-process
during key events, such as publishing or saving a document. For example, you may
typically have a single XPath expression that begins at the root of a document and uses
“to-descendant” axes to query through a document and match nodes for processing.
From a conditional text assignment perspective, you can get the same results with this
type of processing, but the surrounding workflow and overall feel may differ from using
the dedicated conditions management tools.

Tips on condition management
• If you use auto-conditionalization in any capacity, you should normally have all

conditions showing at the time of auto-conditionalization. Otherwise, the results may
be unreliable or unpredictable. For example, if you insert an element and it becomes
conditionalized with a condition that is currently hidden, the results may be
unexpected.

position()=2

 - or -
2

Matches any element that is
at the second position on its
respective branch. In other
words, it is the second child
of its parent.

self::BulletItem[position() > 1] Matches any BulletItem
element that is not the first
element on its respective
branch.

self::* Matches any element.

Expression Description

Chapter 3 The Node Wizard and Other Utilities

FrameSLT 2.3 65

• The right-click menus for text and the Structure View include an Apply Conditions
command, which auto-conditionalizes the selected element and any descendant
elements.

• The expression self::* will match any element. You may choose to place this
expression last in the list as a “catch-all” or default, perhaps to ensure that an element
will be unconditional if no other expressions match. To use it in this capacity, you
should specify to clear existing conditions, and leave the conditions list empty.

• If you want to make expressions more EDD-specific, you can construct them to
consider a unique highest-level element or attribute. For example, assume that you
have a particular structure definition that uses a Chapter HLE, and you want an
expression to match elements only within that structure. An example expression
might be:

self::Body and ancestor::Chapter

This expression will match Body elements, but only if the structure tree has a
Chapter element somewhere in the ancestry.

Chapter 3 The Node Wizard and Other Utilities

66 FrameSLT 2.3

FrameSLT 2.3 67

Chapter 4 Transformations

The FrameSLT transformation engine allows granular-level content reuse for structured
documents. Conceptually, in many ways it emulates XSLT (Extensible Stylesheet
Language - Transformation), a language standard developed and maintained by the
W3C. A working knowledge of XSLT will help you understand FrameSLT, but is not
necessarily required.
This chapter contains the following sections:

• “About FrameSLT vs. XSLT” on page 67
• “Required steps to perform transformations” on page 68
• “About stylesheets and transformations” on page 69
• “Customizing an EDD to allow transformation elements” on page 69
• “Launching transformations” on page 70
• “Editing transformation elements” on page 70
• “Source file details” on page 71
• “About starting contexts” on page 72
• “About cascading contexts” on page 74
• “About preserving transformation elements after a transformation” on page 75
• “Using “FSLT_template” markers” on page 77

About FrameSLT vs. XSLT
XSLT, a transformation language designed and managed by the W3 Consortium,
(www.w3.org), is a versatile standard for transforming XML documents into other
text-based formats, such as HTML. While similar in concept to XSLT, FrameSLT has
many significant differences, including:

• Text files vs. WYSIWYG operation With FrameSLT, all transformations happen
within the FrameMaker interface, using structured FrameMaker files. Unlike XSLT,
you can watch FrameSLT build documents as it happens, and the WYSIWYG
interface allows convenient and comprehensive error reporting as problems occur.

• Transformation element names Many FrameSLT transformation elements are
conceptually similar to XSLT transformation elements, but not all. Those that are have
the same name as their XSLT counterparts, preceded by FSLT_. Others, however,
are unique to FrameSLT and should not be assumed to have a counterpart within the
XSLT standard.

• Transformation element attributes Like XSLT, FrameSLT relies on the attributes of
transformation elements for the necessary processing instructions and metadata.
And, as applicable, those attribute names are the same as their XSLT counterparts,
such as select and test. Again, however, many FrameSLT transformation
attributes are unique to FrameSLT.

• Processing order FrameSLT processes stylesheets in a simple top-to-bottom
fashion, handling transformation elements as they are encountered. You can specify

http://www.w3.org

FrameSLT 2.3 68

any source file at any time, and FrameSLT queries that document with the applicable
XPath. However, XSLT is somewhat different, in that you normally have a single
stylesheet and source XML file, which are processed together in an possibly
non-linear fashion. Because of the FrameSLT processing order, it does not support
the same “templating” concept of XSLT, although it does have its own means of
creating templates with the FSLT_template element, which operates differently.
Also, the usage of the common XSLT XPath statement “/”, as in <xsl:template
match="/">, has no relevance in FrameSLT. These differences will become more
intuitive after you have used FrameSLT transformations a few times.

• Input The input stylesheets and source files for FrameSLT are all structured
FrameMaker documents, not XML files. However, if you can get an XML file into
FrameMaker first, you can transform it. FrameMaker can open any valid XML file and
retain its structural qualities, making the content accessible to FrameSLT.

• Output The normal output of an XSLT processor is a text file, while the output of
FrameSLT is always structured FrameMaker documents. Therefore, FrameSLT is
generally catered towards content reuse purposes only. In contrast, a common usage
of XSLT is to transform XML text files into HTML, which has no relevance within the
structured FrameMaker environment. FrameSLT can be a powerful means of
managing the content you ultimately wish to appear in HTML, but it cannot create the
HTML for you.

Despite the differences, you should find that there are still many similarities, and a
knowledge of one should help you understand the other.

Required steps to perform transformations
To perform transformations with FrameSLT, you must complete two prerequisite steps:
 1 Customize your applicable EDD(s) to allow FSLT transformation elements.

Transformations require these special elements, and FrameMaker does not allow the
insertion of any element that is not defined in the EDD. For more information, see
“Customizing an EDD to allow transformation elements” on page 69.
Note: FrameSLT does provide a means of performing transformations without

altering the EDD of the stylesheet, using unstructured “transformation
markers.” However, this approach is generally not recommended for normal
production work. For more information, see “Using “FSLT_template”
markers” on page 77.

 2 Import the customized EDD into your documents and build stylesheets for
transformation.

Generally, the first step is performed once, after which you can build any number of
stylesheets. The EDD of a stylesheet can be any EDD, as long as it contains the
applicable transformation elements. Therefore, you can add the transformation elements
to your current EDDs and use your existing documents as stylesheets.
Note: Because the initial step involves EDD alteration, you must have EDD

development experience to complete it successfully.

Chapter 4 Transformations

FrameSLT 2.3 69

About stylesheets and transformations
In FrameSLT, you set up stylesheets for transformation, much as you would with XSLT.
These stylesheets may be any structured FrameMaker document, with any content. In
your stylesheets, you can place transformation elements wherever the EDD allows, which
FrameSLT can transform into other content as specified by those element types and
attributes. Your stylesheets can contain any mix and match of “normal” content, and
FrameSLT transformation elements.
When FrameSLT transforms a stylesheet, it walks through the element tree in a
hierarchical fashion, starting at the highest-level element and moving through the ends of
all branches. When it encounters a transformation element, it processes it as appropriate.
All other elements are completely ignored. Therefore, you have complete flexibility when
designing stylesheets.
Note: Currently, transformations occur in the main flow of the stylesheet document

only. Support for other flows will be added based on user demand. If you have a
need to transform flows other than the main flow, please contact West Street.

Transformation elements are prefaced by “FSLT_” and are controlled by your EDD, like
any structured FrameMaker element. Therefore, you can use any EDD to develop
stylesheets, provided that you have altered it to allow the applicable FSLT transformation
elements. For more information, see “Customizing an EDD to allow transformation
elements” on page 69.
Tip: In this document, the term “stylesheet” or “stylesheet document” is used frequently

to denote the document that will undergo transformation. Keep in mind, though,
that a stylesheet is nothing more than a structured FrameMaker document that
allows transformation elements, and any structured document can be a stylesheet
if it has the appropriate EDD.

Customizing an EDD to allow transformation
elements

You may use any structured document with any EDD as a stylesheet. However,
transformation activities do require the special library of FSLT transformation elements.
Therefore, for transformation activities to take place, you must place definitions for these
elements in your EDD(s), as needed to satisfy your transformation requirements.
FSLT element definitions are constructed no differently than any structured FrameMaker
element. They are all Container-type elements with special names and attribute sets that
FrameSLT recognizes and can use for transformations. Therefore, FSLT elements are
added to an EDD like any other element. That is, you should:
 1 Copy the applicable definitions into your EDD, by copy/pasting from the definitions file

provided with FrameSLT, XForm_Elements_EDD.fm.
Note: It is highly recommended that you copy and paste from

XForm_Elements_EDD.fm, because a single typographical error in the
definition may cause unexpected results at best, and crashes at worst.
Transformation elements absolutely must have the exact attribute definitions
found in the sample EDD.

 2 Put provisions for these elements in the general rules of your existing elements, as
applicable.

Chapter 4 Transformations

70 FrameSLT 2.3

FrameSLT processes an FSLT element wherever it finds it, so you have complete
flexibility over where to allow them, or even which elements to allow at all. If you have no
need for certain FSLT elements, there is no reason to include them in your stylesheet
EDD. For example, if you only have a need for FSLT_copy-of elements, and you only
want your stylesheets to allow them within Section elements, you can add only the
FSLT_copy-of definition and restrict it to the Section general rule. On the other hand,
for broad, unrestricted FSLT element usage, you can copy all of the definitions into your
EDD and use Inclusion rules at your highest-level elements to allow them virtually
everywhere.
If you choose to include only certain FSLT elements, be aware that some elements also
require others. For example, the FSLT_choose element requires the FSLT_when
element, and perhaps the FSLT_otherwise element, to function. Or, to create a table
with an FSLT_table element, you must also have all the other accompanying FSLT
table component elements.
Notes: The concept of Inclusions is not supported by the XML standard. If you must

export your stylesheets to XML, do not use Inclusions to incorporate FSLT
elements.

For more information on which FSLT elements may require others to function,
see the specific details for that element in “Chapter 5 Transformation Element
Reference” on page 81.

Launching transformations
You can launch a transformation on the active book or document by selecting FrameSLT
> Transform. Before transformation, consider the following:

• Book vs. document transformations A book transformation is nothing more than a
series of document transformations, for each document file in the book. Keep in mind
that transformations only affect the special transformation elements as they are found,
so a document without any of these elements will be unaffected. For best results,
consider opening all your chapter files before launching a book transformation.

• Source file vs. duplicate file transformations For documents and books, you can
choose whether to transform the original files, or create duplicates first. If you choose
to duplicate a document, the new document will receive the same name as the
original with the text “(TRANSFORMED)” in the file name. If you duplicate a book, you
must select an alternate folder to receive the duplicate book. In this case, the book
and all its chapter files are duplicated, and all cross-references, graphic references,
and other references are adjusted as appropriate to reflect the new path. File names
are not changed during book duplications.
Note: If you perform a transformation on your source files, be aware that these files

may be significantly altered. Therefore, you should use this option with
caution. For source file transformations, FrameSLT never saves them
afterwards, so you can still close them without saving changes to restore
your original files.

Editing transformation elements
When you insert a transformation element, FrameSLT produces an editor that allows the
convenient input of the required attributes. You can also right-click on transformation

Chapter 4 Transformations

FrameSLT 2.3 71

elements in the document or structure view and select Set Up FSLT Element to
reproduce the editor. While FrameMaker allows you to set attributes directly in the
structure view, it is highly recommended that you use the FrameSLT editors instead. In
many cases, the editors filter your options, making it less likely to input unusable
parameters. Also, the editors perform important error checking that can help avoid critical
errors during transformations.
Note: You should never edit a source_file attribute with the native FrameMaker

attribute editor, because the FrameSLT editor performs important decisions
about the specified file that FrameMaker’s editor cannot. If you edit a
source_file attribute with the FrameMaker editor, FrameSLT will likely be
unable to find the source file.

Source file details
For most transformation elements that include an XPath expression for querying, you can
specify any structured book or document as the source file for the query. If you specify a
book, FrameSLT walks through the entire book until all matches are made, as applicable.
Whenever you directly specify a source file or book, your accompanying XPath
expression must begin with the forward slash “go-to-root” axis, because FrameSLT needs
the context of the root element to begin the query. However, if you select to simply
“Inherit” the source file from an ancestor transformation element, the source file context
cascades down with the XPath node context, and your XPath can be constructed without
the initial slash. If you specify “inherit,” there must be an ancestor transformation element
somewhere that explicitly specifies a document or book. For more information on
cascading contexts, see “About cascading contexts” on page 74.

Querying the “current” document
For most transformation elements with XPath, you can specify the “Current” document as
the source file, meaning that the stylesheet will query itself. In this case, the respective
transformation element will behave as normal, perhaps drawing content from somewhere
else in the stylesheet. Be cautious when using this specification, however, because if
your XPath happens to match the transformation element currently being processed, you
may cause an endless loop or any nature of unexpected behavior. For example, if an
FSLT_copy-of element happens to copy itself into its own output, your results will be, at
a minimum, unpredictable.
If you choose to query the “current” document, you can optionally set the initial XPath
context to begin at the transformation element itself. For more information on this feature,
see “About starting contexts” on page 72.

Relative vs. absolute paths
In your preferences (see “Preferences” on page 10), you can set FrameSLT to prefer
relative or absolute paths for transformation elements. If you choose relative paths but a
relative path cannot be resolved, FrameSLT will use the absolute path. Relative paths are
recommended if feasible for your implementation.
In your preferences, you can also set FrameSLT to attempt adjustment of all relative
paths if the document is saved to a new location through the FrameMaker menus. This is
a recommended setting as well.

Chapter 4 Transformations

72 FrameSLT 2.3

Opening, closing, and saving source files
If necessary, FrameSLT will open any source files that are specified in transformation
elements, in order to perform the respective query. In your preferences, you have the
option to allow FrameSLT to close them again afterwards. For more information on
preferences, see “Preferences” on page 10.
FrameSLT never saves changes to your source files! Therefore, if a transformation
causes a change to a source file, FrameSLT will not close it, regardless of your
preferences. In other words, if FrameSLT makes a change to a file that it opened, it
expects you to review the changes yourself before committing the save.
There are two situations that may cause a change to a source file during transformation:

• The source file is a chapter of the book undergoing transformation If
FrameSLT opens a source file for a query, and the file happens to be a chapter of a
book undergoing the transformation, it will eventually be transformed itself. Because
FrameSLT never closes files after a transformation (due to potential unreviewed
changes), a file in this situation will not be automatically closed.

• A cross-reference was created that targets an element in the source file When
cross-references are formed in structured Frame, the ID attribute of the target
element must be populated. When FrameSLT creates a cross-reference, if the
attribute is currently unspecified, it will populate the attribute itself. Therefore, if the
target document were closed without saving the attribute change, the cross-reference
would be broken afterwards. Because FrameSLT never saves changes to your source
files, it cannot close a source file in this situation.

Use of parameters in source file paths
If your preferences are set to allow it, you can use parameters in source file paths
(source_file attributes) on transformation elements. The following notes apply:

• Usage rules are similar to those described for parameters in XPath expressions (see
“About parameters in XPath expressions” on page 76), except that file paths are not
parsed. The consequence for improper usage of parameters in file paths is simply
opening the wrong file or a failure to find the file at all.

• Transformation element dialog boxes do not allow manual editing of source file paths.
You must use the normal attribute editor to add parameters. Note that you should use
forward slashes (/) as file separators instead of backslashes, because backslashes
are considered escape sequences and can be difficult to enter in an attribute editor.

About starting contexts
For most transformation elements with an XPath expression, if you choose to query the
“current” document, you can also choose where to set the initial context for the XPath
query:

• Specified/Inherit The XPath begins at the inherited context, or at the root if the
XPath begins with a forward slash (‘/’). For more information on inherited contexts,
see “About cascading contexts” on page 74.

• FSLT element The starting context is set at the transformation element itself, and
any inherited context is ignored. If the XPath begins with a forward slash (‘/’), the root
becomes the context regardless.

Chapter 4 Transformations

FrameSLT 2.3 73

As an example, consider the following element tree, with two transformation elements:

Both transformation elements have the starting_context attribute set to “Inherit.”
The FSLT_for-each element is set to find all Section elements in the current
document. Then, the FSLT_copy-of element will pick up on the respective Section
context and find Heading children. Therefore, the Heading element shown below will
eventually be matched during some iteration of the FSLT_for-each/FSLT_copy-of
combination, but not in any relation to the proximity of the transformation elements
themselves.
Conversely, consider the following setup:

Chapter 4 Transformations

74 FrameSLT 2.3

In this case, the FSLT_copy-of element starting context is specifically indicated as
“FSLT_element.” This means that the starting context of the XPath expression,

following-sibling::Section/Heading

...will be the FSLT_copy-of element itself, in which case the first match will be the
Heading element seen below. Or in other words, the XPath expression means literally,
“Find any Heading elements that are children of following-sibling Section elements,
beginning at the specified context.” Because the specified context is the FSLT_copy-of
element, the XPath walks straight down and matches the Heading element.
The starting context feature of FrameSLT opens up powerful possibilities for a stylesheet
to manipulate its own structure, based on its own contents. In particular, you have
significant flexibility with the FSLT_create-xref element to create detailed
cross-reference structures for navigational aids such as inner-file tables-of-contents and
“breadcrumbs.”
Note: Because the ability for a stylesheet to query itself is unique to FrameSLT, versus

XSLT, the concept of starting contexts is also unique. The attribute and its
functionality have no counterpart in XSLT.

About cascading contexts
Like XSLT, contexts from FrameSLT transformation element matches are passed down to
all descendant transformation elements. Therefore, if you have subordinate
transformation elements that use XPath, that XPath can assume the context last set by
the ancestor element. For example, consider the following two transformation elements:

Assume that Building Cabinets.fm consists of Section elements, each with a
single Heading child. In this case, the FSLT_for-each element matches the first
Section element and passes that context down to the FSLT_copy-of element. The
FSLT_copy-of XPath, then, starts there and matches all Heading children of that
Section, which should be only one.
At any time, you can reset the node context by beginning your XPath with a forward slash
(“go-to-root”). For example, consider the following variation:

Chapter 4 Transformations

FrameSLT 2.3 75

In this case, the XPath of the FSLT_copy-of begins with a forward slash, meaning that
it will ignore the context passed down by the FSLT_for-each and begin anew at the
root. This particular XPath, in fact, will locate and copy over all Heading elements in
Building Cabinets.fm.
In the previous examples, you can also see the cascading nature of the source file
context. The child FSLT_copy-of element begins its query on the same source file as its
parent transformation element. If the top-level source file were a book, the
FSLT_copy-of element would assume the context of whichever chapter file contained
the match made by the parent FSLT_for-each element.
At any time, you can break the source file context and specify a new source file. However,
if you do, the associated XPath must begin with a forward slash (go-to-root). Without the
go-to-root context, FrameSLT would have no context by which to begin the query in the
new document or book.

About preserving transformation elements
after a transformation

On an element-by-element basis, the following transformation elements can be set to
remain in a post-transformed document:

• FSLT_copy-of

• FSLT_create-xref

• FSLT_param

• FSLT_set-attribute

• FSLT_set-marker

• FSLT_template

• FSLT_value-of

If set for preservation, the respective element remains in the transformed document with
the original settings, and can undergo transformations repeatedly. In the case of
FSLT_copy-of, FSLT_value-of, FSLT_create-xref, and FSLT_template, any
content copied into the stylesheet becomes the child(ren) of the transformation element.
To facilitate this action, all contents of these elements are automatically cleared at the
beginning of transformations. In the case of the other two, the body content of the
stylesheet is never affected, so they can simply remain as is.

Chapter 4 Transformations

76 FrameSLT 2.3

The ability to preserve these elements provides powerful possibilities for repetitious
content reuse and regular updates. For example:

• Text inset replacement If you use text insets, and your source text is always from
structured FrameMaker documents, you could use FSLT_copy-of,
FSLT_value-of, and FSLT_template elements as a superior replacement. With
these elements set to be preserved, you could run repeated transformations on your
source files to update the “inset” text at any time, after which the content is inserted
directly into your document. The text would be completely editable like any other
content, except that you could overwrite it with an update at will.
Tip: The sample files included with FrameSLT contain many setups that

demonstrate this functionality.
• Automatic “breadcrumb” and TOC generation If you use breadcrumbs that follow

a certain structural pattern or logic, you can use FSLT_create-xref elements to
completely automate the process and allow updates at any time. For example,
assume that all your “Level 1” sections should have a cross-reference list to all
subordinate “Level 2” sections. In a situation such as this, the XPath-based
cross-reference generation provided by FrameSLT can significantly enhance the
navigability of your documents, at a fraction of the time required to do it manually.
Tip: To see an example of breadcrumbs automatically created by FrameSLT, see the

cross-reference list at the beginning of this chapter.
If you want to use FrameSLT in this fashion; that is, running repeated transformations on
the same source files, please note that all transformation elements in the files must allow
preservation, and be set up as such. Otherwise, your stylesheet will be different after the
first transformation, and a repeat transformation will not produce the same results. For
example, if you have an FSLT_for-each element in the stylesheet, it will be removed
after the first transformation regardless, and subsequent transformations will not consider
it.

About parameters in XPath expressions
If enabled in your preferences, FrameSLT supports the use of parameters in XPath
expressions for transformation elements. The following notes apply:

• Before it can be resolved in an expression, a parameter must be defined with an
FSLT_param element. Unresolved parameters will cause a parsing error and a
transformation to abort.

• A parameter is indicated with a dollar sign ($). Whenever a dollar sign is encountered,
FrameSLT combines the following characters one-at-a-time until the resulting string
matches a known parameter. If the end of the expression is reached before a match is
made, the parameter is considered unresolved.

• Whenever a parameter is used in an expression, the expression cannot be parsed
until the transformation process actually reaches that element. Therefore, parsing
errors may occur in the middle of a transformation depending upon the value of the
parameter at that time. For any transformation elements that do not use parameters,
the expressions are parsed before the transformation process begins.

• Parameters are allowed anywhere in an expression, including within string literals if
your preferences are set to allow it. This freedom of usage provides considerable
flexibility but also adds a burden of responsibility for a stylesheet developer. A small

Chapter 4 Transformations

FrameSLT 2.3 77

error in an expression with parameters or an unexpected parameter value at the time
of transformation can have significant consequences.

• When a parsing error occurs, the error report will show the expression with the
parameter(s) replaced by the respective value(s). You must refer to the original
stylesheet to see the original expression with the parameters.

• For external calls only, parameter values can be pre-defined before transformation
(analogous to passing parameters to an XSLT stylesheet). For more information, see
“SetParam” on page 129.

As an example, consider the following expression:
//$MyParameter

If there were a parameter named “MyParameter” defined as “Heading” at the time of
transformation, FrameSLT would attempt to parse the following expression:

//Heading

Or, if there were a parameter named “Param” defined as “Heading” at the time of
transformation, FrameSLT would attempt to parse the following expression:

//MyHeadingeter

For more information on preferences, see “Preferences” on page 10.

Using “FSLT_template” markers
Normally, transformation of a document requires that its EDD contain the necessary
transformation elements to perform the desired tasks. However, FrameSLT does provide
an alternative using unstructured “FSLT_template” markers. With these markers, you can
call in transformation “templates” from another document and transform any stylesheet,
regardless of the stylesheet’s own EDD.
To use “FSLT_template” markers, you should understand how the FSLT_template
element works first. The concepts are similar, and explained in more detail in
“FSLT_template” on page 106
Before attempting to use “FSLT_template” markers, please note the following:

• The best way to set up stylesheets and perform transformations is to adjust the EDD
accordingly and use transformation elements instead. Using “FSLT_template”
markers can allow powerful and comparable transformations, but the logistics of their
use are much less flexible.

• Transformation elements are required for transformations, regardless of how they are
introduced into the stylesheet. Therefore, to perform transformations on a stylesheet
whose EDD does not define transformation elements, the “FSLT_template” marker
must copy in transformation content from a document whose EDD does. Therefore,
you must ultimately have some document, somewhere, that allows you to create
transformation setups using the FSLT_template element.

• Marker-based transformations are always a one-time transformation; that is, you
cannot re-transform the same document more than once, unless you are creating
duplicates each time.

• Your sample files include an example that performs a marker-based transformation.
You may find that an examination of this file to be the best way for understanding how
these markers work.

Chapter 4 Transformations

78 FrameSLT 2.3

How “FSLT_template” markers work
When FrameSLT encounters an “FSLT_template” marker, it acts similarly to an
FSLT_template process, in that it looks for another FSLT_template element with the
same template ID, and copies its contents into the stylesheet. In the case of the marker,
the template ID is specified as part of the marker’s text, instead of an attribute on a
structural element. As with FSLT_template elements, you can direct the search
towards an “FSLT_template” flow in the current document, or another document
altogether.
Because a “FSLT_template” marker causes content to be copied into the stylesheet, but
lacks any structural hierarchy to manage the incoming content, the process cannot be
performed twice on the same stylesheet. That is, the content will be copied in at the
location of the marker, but FrameSLT will have no means of identifying that content during
any future transformations. Therefore, “FSLT_template” markers cannot facilitate any
kind of “refreshable,” text inset-type architecture.
An “FSLT_template” marker can copy any nature of content into the stylesheet, including
transformation elements. If the stylesheet’s EDD does not provide for transformation
elements, any transformation elements will be invalid after insertion, but will be processed
like any other transformation element. FrameSLT does not require a transformation
element to be valid in order to process it.
For more information on how to set up an “FSLT_template” marker, see “Adding markers
to the stylesheet” on page 78. For more information on how the FSLT_template
element works, including information on “FSLT_template” flows, see “FSLT_template” on
page 106.

Creating the marker type
To put any type of marker in a document, that type must be defined in the document’s
template. In this case, you must create an “FSLT_template” marker, if it does not already
exist. To create an “FSLT_template” marker type, refer to the FrameMaker help
documentation. When creating the marker type, note the following:

• You must adhere to the exact spelling and case of the marker type, “FSLT_template.”
• You do not need to alter the EDD, even for the markers themselves. “FSLT_template”

marker functionality is designed to work with unstructured markers.

Adding markers to the stylesheet
When adding the markers, you should insert them like any marker, selecting
“FSLT_template” as the type. For the marker text, you must enter the following:

[TemplateSourceDoc]---[TemplateID]

where:
• TemplateSourceDoc is the name of the document where the corresponding
FSLT_template element is located. If you specify “Current,” FrameSLT will search
the “FSLT_template” flow of the current stylesheet, if it exists.
Note: If you specify an external document, you must specify a document file name

only, and the file must be in the same folder as the stylesheet. With
“FSLT_template” markers, FrameSLT cannot search any files outside of the
current folder, nor can it search whole books.

Chapter 4 Transformations

FrameSLT 2.3 79

• TemplateID is the ID of the target FSLT_template element, specified in the
template_ID attribute.

• --- is the required delimiter between the two arguments. It must be exactly three
dashes with no spaces on either end.

The following are some examples of “FSLT_template” marker text:
MyTemplatesDoc.fm---Template1

(Searches MyTemplatesDoc.fm for an FSLT_template element with “Template1”
specified for the template_ID attribute. It searches the “FSLT_template” flow first, if
it exists, then the main flow.)
Current---Template2

(Searches the current document within the “FSLT_template” flow, if it exists. Note that
a current document’s EDD controls element availability in all flows, so it is not likely
that you would use a marker in this case. If your EDD allows transformation elements,
you should put them directly in the main flow, rather than using markers to call them
from the “FSLT_template” flow.

Be conscious of the location when inserting “FSLT_template” markers. An unstructured
marker can be placed nearly anywhere, but if you place it in a location that obstructs
content from being copied in, such as within an <EMPTY> container element, the process
may fail. FrameSLT attempts to insert the content at the exact location of the marker,
which may present an architectural challenge because it can be difficult to ascertain the
exact “structural” location of an unstructured marker.

Chapter 4 Transformations

80 FrameSLT 2.3

FrameSLT 2.3 81

Chapter 5
Transformation Element

Reference

This chapter contains detailed information on each transformation element, including
required parameters and processing specifics. For general information on
transformations, see “Chapter 4 Transformations” on page 67.
Transformation elements supported by FrameSLT include:

• “FSLT_choose” on page 81
• “FSLT_copy-of” on page 83
• “FSLT_create-xref” on page 85
• “FSLT_for-each” on page 87
• “FSLT_if” on page 89
• “FSLT_otherwise” on page 91
• “FSLT_param” on page 92
• “FSLT_set-attribute” on page 93
• “FSLT_set-marker” on page 95
• “FSLT_sort” on page 97
• “FSLT_table” on page 99
• “FSLT_tablebody” on page 103
• “FSLT_tablecell” on page 103
• “FSLT_tableheading” on page 104
• “FSLT_tablefooting” on page 104
• “FSLT_tablerow” on page 104
• “FSLT_tabletitle” on page 105
• “FSLT_template” on page 106
• “FSLT_value-of” on page 110
• “FSLT_when” on page 113

FSLT_choose
The FSLT_choose element allows you to set up a structure that makes any number of
XPath-based evaluations, stopping at the first one that holds true and performing the
directed tasks. The operation is conceptually similar to that of FSLT_if, except that you
can set up multiple conditions.

FSLT_choose processing
FSLT_choose requires one or more child FSLT_when elements, which is where the
evaluations take place. During transformation, FrameSLT steps through the FSLT_when

FrameSLT 2.3 82

elements in order, testing the XPath for each one. If one matches (that is, the XPath finds
something), the content of that FSLT_when element is added to the stylesheet. After a
match, no further evaluations are made, and all other content of the FSLT_choose
element is simply removed.
FSLT_choose can optionally include an FSLT_otherwise element at the end, as a
default if all previous evaluations prove false. The content of an FSLT_otherwise is
always added to the stylesheet if all FSLT_when evaluations fail. If an FSLT_when
evaluation holds true, however, the FSLT_otherwise is discarded like the rest of the
FSLT_choose content.
FSLT_choose, FSLT_when, and FSLT_otherwise elements never retrieve content
from the source files themselves. However, you can use descendant transformation
elements to retrieve content based on a new or inherited context. For more information on
cascading contexts, see “About cascading contexts” on page 74.
Note: In a normal XSLT environment, an xsl:when element itself should not pass any

context to descendant transformation elements, unlike elements such as
xsl:for-each which do pass down the context established by the XPath
match from the select attribute. That is, if the XPath expression contained in
the test attribute of xsl:when does make a match, it is for testing only and the
context of the match does not get passed down. However, previous to version
2.0, FrameSLT erroneously did pass down the context from an FSLT_when
XPath match. In an effort to fix this problem while maintaining backwards
compatibility, the FrameSLT preferences now include an option to process in
either fashion. For more information, see “Preferences” on page 10.

FSLT_choose attributes
FSLT_choose has no attributes that you need to set. All XPath-based and other
attributes are specified at the child FSLT_when element(s).

FSLT_choose example
The following figure illustrates a sample FSLT_choose attribute structure:

Chapter 5 Transformation Element Reference

FrameSLT 2.3 83

During transformation, the following events occur:
 1 For the context source file, if the ChapNum attribute of the highest-level Chapter

element is set to “MyFirstChapter”, the Body element with the text “This document is
MyFirstChapter” is added to the stylesheet.

 2 Else, if the ChapNum attribute of the highest-level Chapter element is set to
“MySecondChapter”, the FSLT_copy-of element is added to the stylesheet. The
FSLT_copy-of element is subsequently processed, resulting in any child Title
elements being copied to the stylesheet.

 3 Else, if neither FSLT_when element makes a match, the Body element contained by
the FSLT_otherwise element is added to the stylesheet.

Following transformation, all FSLT_choose, FSLT_when, and FSLT_otherwise
elements are removed from the stylesheet, leaving only the contents of the applicable
element for which a match was made, if any.

FSLT_copy-of
FSLT_copy-of is one of the primary elements for retrieving content from your source
files. It performs an XPath query for elements and copies over any that match the XPath.

FSLT_copy-of processing
FSLT_copy-of operation is basic. It queries your source files based on the specified
XPath, and for any elements that it matches, it copies them to the stylesheet. The copy

Chapter 5 Transformation Element Reference

84 FrameSLT 2.3

includes all child elements and text. It continues copying over elements until all matches
are exhausted, within the scope of the “max_matches” attribute.
Because the content retrieval is element-based, your XPath should not search for
attributes. If the final axis of an FSLT_copy-of XPath matches an attribute, the
transformation will abort and return an error. Also, certain elements cannot be copied
independently, such as table components. An attempt to copy one of these elements to
your stylesheet will also cause the transformation to abort.

FSLT_copy-of attributes

FSLT_copy-of example
The following figure shows an actual element from the sample file Sample1_CopyOf,
which is included with FrameSLT:

This FSLT_copy-of element is configured to look for all Heading elements in the
Building Cabinets.fm file. For any that are found, they are copied to the stylesheet
document. Following transformation, the element structure appears as follows:

Attribute Description
select XPath expression for the query. Any element matched will be

copied to the stylesheet.

source_file Source file or book for the XPath query. For more information
on source files, see “Source file details” on page 71.

fslt_element Whether or not to preserve the FSLT_copy-of element
following a transformation. For more information, see “About
preserving transformation elements after a transformation”
on page 75.

starting_context The starting context for the XPath query, either as inherited,
implied by the XPath, or the transformation element itself.
This option is only available if the element is querying the
“current” stylesheet or document. For more information, see
“About starting contexts” on page 72.

max_matches The maximum number of matches permitted for this element,
with zero (0) indicating unlimited (match all).

Chapter 5 Transformation Element Reference

FrameSLT 2.3 85

The FSLT_copy-of element still appears in the transformed document, because it was
set to be preserved. Had it been set to be removed, the results would have been the
same, except that the new Heading elements would be on the main branch, and the
FSLT_copy-of element would be gone.
To see this particular transformation occur, open Sample1_CopyOf.fm and run a
transformation.

FSLT_create-xref
An FSLT_create-xref element allows you automatically create one or more
cross-references, based on an XPath query.

FSLT_create-xref processing
FSLT_create-xref performs a simple XPath query of any supported source file or
book, and creates a cross-reference to each element that is matched. It continues
creating cross-references until all matches are exhausted.
FSLT_create-xref attributes include parameters about element tags and formats for
the generated cross-references. You can also optionally choose an element to wrap each
generated cross-reference.
Because FSLT_create-xref generates new cross-references, the transformation
process requires a full-document cross-reference update following a transformation, in
order to populate the new cross-reference text. All cross-references in your document,
not just those generated, will be updated during this process.
Because cross-references always point to elements, not attributes, your XPath should
search for elements, not attributes. If your XPath does locate attributes, the resulting
cross-references will simply point to the elements where the attributes were found.

Special note on generated cross-references
All cross-references generated by FSLT_create-xref are element-based, versus the
marker-based type used in unstructured FrameMaker. Therefore, the source of any
generated cross-reference must have an ID attribute designed as a “Unique ID” type. In

Chapter 5 Transformation Element Reference

86 FrameSLT 2.3

other words, the XPath of an FSLT_create-xref must match elements with ID
attributes, otherwise FrameSLT cannot establish the cross-references.
In addition, if a source ID attribute is found to be empty, FrameSLT generates a unique ID
and populates the attribute, such that the cross-reference can be completed. Afterwards,
you must save the document containing the source element with the new unique ID,
otherwise the cross-reference will become unresolved after you close the source file.

FSLT_create-xref attributes

FSLT_create-xref example
The following figure shows the actual element structure used to create the
cross-reference list at the beginning of this chapter:

Attribute Description
select XPath expression for the query. Cross-references will be

created for each match made.

source_file Source file or book for the XPath query. For more information
on source files, see “Source file details” on page 71.

element_tag Element tag for the generated cross-references. This tag must
be a valid tag for cross-references, according to the
stylesheet’s EDD.

format Format for the cross-reference, from the stylesheet’s
template.

wrap_element An optional element to wrap each generated cross-reference.

fslt_element Whether or not to preserve the FSLT_create-xref element
following a transformation. For more information, see “About
preserving transformation elements after a transformation” on
page 75.

starting_context The starting context for the XPath query, either as inherited,
implied by the XPath, or the transformation element itself. This
option is only available if the element is querying the “current”
stylesheet or document. For more information, see “About
starting contexts” on page 72.

Chapter 5 Transformation Element Reference

FrameSLT 2.3 87

In this case, the FSLT_create-xref element looked for all Heading elements that
were a child of a Section element, which in turn was a child of the highest-level
Chapter element. In other words, all first-level headings. For all matches made, it
generated a cross-reference with the CrossReference element tag and the “Heading
on page” format, and wrapped it in a BulletItem element. The resulting structure tree
looked as follows:

Because the element was set up to be preserved, the transformation could be run
repeatedly as desired to update the cross-reference list.

FSLT_for-each
FSLT_for-each elements allow you to repeat a particular “template” for each match of a
specified XPath expression. It is analogous to its XSLT counterpart, for-each.

Chapter 5 Transformation Element Reference

88 FrameSLT 2.3

FSLT_for-each processing
FSLT_for-each performs a normal XPath query, and for each match made, it adds its
contents to the stylesheet. Sometimes called a “template,” the entire contents of the
FSLT_for-each are added once for each match. In many ways, FSLT_for-each is
similar to FSLT_if, except that FSLT_if stops at the first match and adds its contents
one time only, while FSLT_for-each continues the process until all possible matches
are exhausted, within the scope of the “max_matches” attribute.
On its own, FSLT_for-each does not retrieve any content from your source files.
However, it can contain any number of other transformation elements that do, such as
FSLT_copy-of and FSLT_value-of. As with all transformation elements, normal
cascading context rules apply, such that the FSLT_for-each element will pass down the
context of each match to its descendants before adding them to the stylesheet. For more
information, see “About cascading contexts” on page 74.
Due to the templating concept and the structural changes caused by FSLT_for-each,
the original transformation element and its contents are removed from the stylesheet after
transformation. If the XPath makes no match at all, the transformed document will appear
as if the element had simply been deleted.
Tip: You can sort the content added to the stylesheet, either alphabetically or

numerically, with an FSLT_sort element.

FSLT_for-each attributes

FSLT_for-each example
The following figure shows a sample FSLT_for-each element structure:

Attribute Description
select XPath expression for the query. For each match, the contents

(or template) of the element are added to the stylesheet.

source_file Source file or book for the XPath query. For more information
on source files, see “Source file details” on page 71.

starting_context The starting context for the XPath query, either as inherited,
implied by the XPath, or the transformation element itself. This
option is only available if the element is querying the “current”
stylesheet or document. For more information, see “About
starting contexts” on page 72.

max_matches The maximum number of matches permitted for this element,
with zero (0) indicating unlimited (match all).

Chapter 5 Transformation Element Reference

FrameSLT 2.3 89

This FSLT_for-each element will be looking for all Section elements in Building
Cabinets.fm. As each match is made, the Body and FSLT_copy-of elements are
added to the stylesheet. During the process, the context of the matched Section
element is passed down to the FSLT_copy-of, which is subsequently processed to copy
over any Heading children of the Section element.
Assuming that each Section element in Building Cabinets.fm has exactly one
child Heading element, the transformed structure might appear as follows:

Note that the original FSLT_for-each element and its contents are gone.

FSLT_if
An FSLT_if element allows you to perform an XPath-based evaluation, and if the
evaluation holds true, the contents of the element are added to the stylesheet. Otherwise,
the element and its contents are removed.

FSLT_if processing
FSLT_if performs an XPath query until a single match is made, or the source files are
exhausted. If a match is made, FSLT_if adds its contents to the stylesheet and
discontinues searching. If no match is made, the FSLT_if element is simply deleted. In
other words, if the XPath finds anything at all, the “if” evaluation is considered “true,” and
no further searching is required.

Chapter 5 Transformation Element Reference

90 FrameSLT 2.3

FSLT_if supports basic parameter evaluation for the XPath, for example:
$MyParameter="ThisValue"

For any parameter evaluation that is more complex, such as with the use of functions, you
should start the XPath with a “to-self” axis, then put the evaluation into a predicate. For
example:

.[contains("$MyParameter", "ThisValue")]

On its own, FSLT_if does not retrieve any content from your source files. However, it
can contain any number of other transformation elements that do, such as
FSLT_copy-of and FSLT_value-of.
Due to the templating concept and the structural changes caused by FSLT_if, the
original transformation element and its contents are removed from the stylesheet after
transformation. If the XPath makes no match at all, the transformed document will appear
as if the element had never existed.
Note: In a normal XSLT environment, an xsl:if element itself should not pass any

context to descendant transformation elements, unlike elements such as
xsl:for-each which do pass down the context established by the XPath
match from the select attribute. That is, if the XPath expression contained in
the test attribute of xsl:if does make a match, it is for testing only and the
context of the match does not get passed down. However, previous to version
2.0, FrameSLT erroneously did pass down the context from an FSLT_if XPath
match. In an effort to fix this problem while maintaining backwards compatibility,
the FrameSLT preferences now include an option to process in either fashion.
For more information, see “Preferences” on page 10.

FSLT_if attributes

FSLT_if example
The following figure shows a sample FSLT_if element structure:

Attribute Description
test XPath expression to test for a match. If a match is made, the

contents (or template) of the element are added to the
stylesheet.

source_file Source file or book for the XPath query. For more information
on source files, see “Source file details” on page 71.

starting_context The starting context for the XPath query, either as inherited,
implied by the XPath, or the transformation element itself. This
option is only available if the element is querying the “current”
stylesheet or document. For more information, see “About
starting contexts” on page 72.

Chapter 5 Transformation Element Reference

FrameSLT 2.3 91

This FSLT_if element will be looking for a Section element in Building
Cabinets.fm. When the first match is made, the Body and FSLT_copy-of elements
are added to the stylesheet. During the process, the context of the matched Section
element is passed down to the FSLT_copy-of, which is subsequently processed to copy
over any Heading children of the Section element. After the first match of FSLT_if, its
query stops and it is removed. The FSLT_copy-of, however, performs as normal,
continuing its own query until all matches are exhausted.
In essence, this setup will copy over the first heading in Building Cabinets.fm. After
transformation, the structure might appears as follows:

Note that the original FSLT_if element and its contents are gone.

FSLT_otherwise
The FSLT_otherwise element is an optional component of an FSLT_choose element
structure. It contains the default content to be added to the stylesheet if no preceding
FSLT_when elements make an XPath match.

FSLT_otherwise processing
See FSLT_choose.

FSLT_otherwise attributes
FSLT_otherwise has no attributes that you need to set. All XPath-based and other
attributes are specified at the child FSLT_when element(s). FSLT_otherwise is only
used as a default if all the XPath evaluations of the preceding FSLT_when elements fail
to make an XPath match.

Chapter 5 Transformation Element Reference

92 FrameSLT 2.3

FSLT_otherwise example
See FSLT_choose.

FSLT_param
FSLT_param assigns a value to a parameter, either as retrieved from the contents of a
matched node or as a static value. Once a parameter is defined, it can be retrieved for
use in:

• XPath expressions (see “About parameters in XPath expressions” on page 76)
• Source file paths (see “Use of parameters in source file paths” on page 72)
• FSLT_value-of elements

Tip: If you are new to XSLT terminology, you can think of a parameter as a variable that
can be set during transformation, then its value retrieved later in the situations
listed above.

Note that an FSLT_param element is ignored during API-based transformations if the
named parameter is already defined. For more information, see “SetParam” on page 129.

FSLT_param processing
FSLT_param operation is generally simple; however, the flexibility allowed with its
configuration can cause confusion. When encountered, it assigns a value to the named
parameter by either:

• Using the specified static value
-or-

• Making an XPath query and retrieving the contents of the first matched node, up to
the first 100 characters for element matches or the first value for attribute matches. If
no match is made or the matched node is empty, the parameter is assigned an empty
string.

For any transformation launched manually, no parameters are defined until FSLT_param
elements are encountered. In other words, parameter assignment does not carry over to
subsequent transformation actions. Also, unlike XSLT, parameters have no scope and
may be redefined an indefinite number of times.
Note: An exception exists with API-launched transformations, which allow the

predefinition of parameters. For more information, see “SetParam” on page 129.

FSLT_param attributes
Attribute Description
name Parameter name. The dollar sign ($) used when the

parameter is referenced elsewhere is not required.

starting_context The starting context for the XPath query, either as inherited,
implied by the XPath, or the transformation element itself.
This option is only available if the element is querying the
“current” stylesheet or document. For more information, see
“About starting contexts” on page 72.

Chapter 5 Transformation Element Reference

FrameSLT 2.3 93

FSLT_set-attribute
FSLT_set-attribute allows you to set an attribute of a parent or preceding-sibling
element. It can use XPath to find the value for the attribute, or you can specify a preset
value. In either case, XPath is required, and a match must be made for the attribute to be
set at all.

FSLT_set-attribute processing
FSLT_set-attribute performs an XPath query until a single match is made, or the
source files are exhausted. If a match is made, FSLT_set-attribute sets the value of
the specified attribute to either the contents of the matched node (element or attribute), or
to a preset value. If no match is made, the attribute is not set at all.
Because an XPath match is required, if you are specifying a preset value that you want to
be set every time, your XPath should be a generic expression that is guaranteed to make
a match. For example, the expression /* used on the Current source file will match the
highest-level element of the stylesheet, which by nature always exists.
FSLT_set-attribute can set an attribute on either a parent or preceding-sibling
element. This specification is part of the required FSLT_set-attribute parameters. If
the specified attribute cannot be found for any reason, a warning is printed to the error
report and transformation continues.
FSLT_set-attribute adds the specified or derived value to any existing values of the
attribute. It does not replace or delete any existing values. Also, if the XPath matches an
attribute, only the first value of the attribute is extracted and applied to the new attribute.
Tip: For wide-scale attribute manipulation, the FrameSLT Node Wizard may be more

appropriate for some situations, used on the stylesheet after transformation. For
more information, see “Chapter 3 The Node Wizard and Other Utilities” on
page 33.

select Either:
• A static value for the parameter enclosed in single quotes

(')
-or-

• An XPath expression to query for the parameter value

source_file Source file or book for the XPath query. If you are specifying
a static value for the parameter, select the current document
if no file context is available to be inherited. For more
information on source files, see “Source file details” on
page 71.

fslt_element Whether or not to preserve the FSLT_param element
following a transformation. For more information, see “About
preserving transformation elements after a transformation”
on page 75.

Attribute Description

Chapter 5 Transformation Element Reference

94 FrameSLT 2.3

FSLT_set-attribute attributes

FSLT_set-attribute example
The following figure shows a sample FSLT_set-attribute element:

Attribute Description
select XPath expression for the query. If a match is made, the

specified attribute is set, either with a preset value, or with the
content derived from the matched node. If a preset value is
specified, it always overrides the matched node content.

source_file Source file or book for the XPath query. For more information
on source files, see “Source file details” on page 71.

attribute Name of the attribute to set. Case is considered.

value Preset value, which if specified, is the value applied to the
attribute. If specified, this value always overrides the content
of the matched node. If the XPath makes no match, however,
no value is applied at all.

target_element The element containing the attribute to set, either a parent or
preceding-sibling element, in relation to the
FSLT_set-attribute element.

fslt_element Whether or not to preserve the FSLT_set-attribute
element following a transformation. For more information, see
“About preserving transformation elements after a
transformation” on page 75.

starting_context The starting context for the XPath query, either as inherited,
implied by the XPath, or the transformation element itself. This
option is only available if the element is querying the “current”
stylesheet or document. For more information, see “About
starting contexts” on page 72.

Chapter 5 Transformation Element Reference

FrameSLT 2.3 95

The FSLT_set-attribute element will attempt to find an AttributeA on the
highest-level Chapter element of the current stylesheet. If found, it will extract the value
of the Chapter’s AttributeA and apply it to the Section’s AttributeA. If the
highest-level element is not named Chapter, or it has no AttributeA, nothing
happens.
Note that the value attribute is unspecified. If specified, and the XPath made a match,
this value would be applied to AttributeA, rather than the content derived from the
XPath match.

FSLT_set-marker
FSLT_set-marker allows you to set the text of a parent or preceding-sibling marker
element. It can use XPath to find the text for the marker, or you can specify a preset
value. In either case, XPath is required, and a match must be made for the marker to be
set at all.

FSLT_set-marker processing
FSLT_set-marker performs an XPath query until a single match is made, or the source
files are exhausted. If a match is made, FSLT_set-marker sets the text of the specified
marker to either the contents of the matched node (element or attribute), or to a preset
value. If no match is made, the marker is not set at all.
Because an XPath match is required, if you are specifying a preset value that you want to
be set every time, your XPath should be a generic expression that is guaranteed to make
a match. For example, the expression /* used on the Current source file will match the
highest-level element of the stylesheet, which by nature always exists.
FSLT_set-marker can set either a parent or preceding-sibling marker element. This
specification is part of the required FSLT_set-marker parameters. Because marker
elements generally do not allow children, normally the “preceding-sibling” specification

Chapter 5 Transformation Element Reference

96 FrameSLT 2.3

should be used. If the specified marker element cannot be found for any reason, a
warning is printed to the error report and transformation continues.
Note: FSLT_set-marker replaces any text currently assigned to the target marker.

FSLT_set-marker attributes

FSLT_set-marker example
The following figure shows a sample FSLT_set-marker element:

Attribute Description
select XPath expression for the query. If a match is made, the

specified marker is set, either with a preset value, or with the
content derived from the matched node. If a preset value is
specified, it always overrides the matched node content.

source_file Source file or book for the XPath query. For more information
on source files, see “Source file details” on page 71.

value Preset value, which if specified, is the text applied to the
marker. If specified, this value always overrides the content of
the matched node. If the XPath makes no match, however, no
value is applied at all.

target_element The element representing the marker to set, either a parent or
preceding-sibling element, in relation to the
FSLT_set-marker element.

fslt_element Whether or not to preserve the FSLT_set-marker element
following a transformation. For more information, see “About
preserving transformation elements after a transformation” on
page 75.

starting_context The starting context for the XPath query, either as inherited,
implied by the XPath, or the transformation element itself.
This option is only available if the element is querying the
“current” stylesheet or document. For more information, see
“About starting contexts” on page 72.

Chapter 5 Transformation Element Reference

FrameSLT 2.3 97

The FSLT_set-marker element will attempt to find a Title element child of the
highest-level Chapter element of the current stylesheet. If found, it will extract the text of
the Title apply it to the SampleMarker marker. If the highest-level element is not
named Chapter, or it has no Title child.
Note that the value attribute is unspecified. If specified, and the XPath made a match,
this value would be applied to SampleMarker, rather than the content derived from the
XPath match.

FSLT_sort
FSLT_sort allows you to sort the content added to the stylesheet by an
FSLT_for-each element, or table rows added by an FSLT_tablerow element, either
alphabetically or numerically. The sort criterion is based on a text string or number
derived with an XPath expression. This element is analogous to its XSLT counterpart,
sort.

FSLT_sort processing
If present, FSLT_sort must be the first child of an FSLT_for-each or
FSLT_tablerow element, where it is processed once for each match made by the
respective transformation element. Each time, FSLT_sort performs an XPath query,
normally starting from an inherited context, until a single match is made. Once a match is
made, FrameSLT evaluates the content of the matched node (element or attribute),
versus the contents of all previously matched nodes, and determines where to place the
remaining contents of the FSLT_for-each element or the new table row. In other words,
FSLT_for-each or FSLT_tablerow adds its content to the stylesheet once for each
match, and FSLT_sort decides where to place that content in relation to
previously-placed content. If FSLT_sort cannot make a match itself, it has no effect.
As mentioned previously, the criterion for evaluation is the content of a node matched
with XPath. Nearly always, the XPath starts at a context set from the FSLT_for-each or
FSLT_tablerow element match, evaluating some nearby element, or perhaps the
element that FSLT_for-each or FSLT_tablerow matched itself. For example, if the
XPath expression of the FSLT_sort element is a simple period (.), which means
“go-to-self,” the sort evaluations are performed based on whichever node was matched
by FSLT_for-each or FSLT_tablerow.
FSLT_sort allows the specification of either a numeric or string data type for the
evaluation. In many cases, the sort results may be the same. However, some numbers,
as a string, are lexically “smaller” than the equivalent numeric evaluation. For example, a
text evaluation will regard “10” as smaller than “2,” while a numeric evaluation would
return the opposite. Therefore, if you know for certain that all the evaluation items will be
numbers, you should select the numeric comparison.
Before using FSLT_sort note the following:

• Currently, FrameSLT only allows a single FSLT_sort element per FSLT_for-each
or FSLT_tablerow loop.

• Currently, numeric evaluations currently support integers only.
• FSLT_sort does not provide a source_file specification, because the only logical

query would be on the same document queried by the FSLT_for-each or
FSLT_tablerow element.

Chapter 5 Transformation Element Reference

98 FrameSLT 2.3

Special note on using FSLT_sort with FSLT_tablerow
When used to sort table rows generated by FSLT_tablerow, the results are
conceptually similar as when used with FSLT_for-each. The rows of the resulting table
are sorted according to the FSLT_sort XPath match, the same as they would be in any
other circumstance.
However, FSLT_tablerow/FSLT_sort combinations may require an additional
consideration if you have multiple sibling FSLT_tablerow elements under one
FSLT_table structure. You can have multiple FSLT_tablerow elements generating
rows, each with its own FSLT_sort child, but this setup must be constructed carefully. If
each FSLT_sort has the same order (ascending/descending) and type (text/numeric)
settings, the sort should work as expected, and all generated rows will be sorted together.
However, if you mix the order and/or type between FSLT_sort elements under a single
FSLT_table structure, the sorting results may be unpredictable.

FSLT_sort attributes

FSLT_sort example
The following figure shows a sample FSLT_for-each / FSLT_sort element setup:

Attribute Description
select XPath expression for the query. If a match is made, the specified

marker is set, either with a preset value, or with the content
derived from the matched node. If a preset value is specified, it
always overrides the matched node content.

order Order by which to sort, either ascending or descending.

data-type Type of data to be evaluated. For more information, see
“FSLT_sort processing” on page 97.

Chapter 5 Transformation Element Reference

FrameSLT 2.3 99

The FSLT_for-each element queries Building Cabinets.fm, matching all
Section elements. For each match, the contents of the FSLT_for-each element
(excluding FSLT_sort) are added to the stylesheet. Before they are added, however, the
FSLT_sort evaluates the text of the Heading child of the matched Section element
and determines where to place the material. This process occurs once for each match
made by FSLT_for-each.
After transformation, the element tree might appear as follows:

Note the alphabetical order of the text of the Heading elements. Also note how “STEP
10” was seen as lexically “smaller” than “STEP 2.”

FSLT_table
FSLT_table allows you build structured FrameMaker tables with content extracted from
your source files and/or other static content. FSLT_table and associated elements are
required for table construction because of the specialized nature of FrameMaker table
and table component elements. FSLT_table and associated elements are unique to
FrameSLT and have no counterparts in XSLT.

FSLT_table structure and requirements
To use FSLT_table, you must essentially build a mock structure of the table you wish to
generate, using the appropriate transformation elements for each required part. These
transformation elements include:

• FSLT_table

• FSLT_tabletitle

• FSLT_tableheading

• FSLT_tablebody

• FSLT_tablefooting

• FSLT_tablerow

Chapter 5 Transformation Element Reference

100 FrameSLT 2.3

• FSLT_tablecell

Each of these elements represents a specific type of table component element that can
be part of a FrameMaker table. A complete FSLT_table structure should resemble the
basic structure of the intended output table in hierarchy and element order.
The requirements for using FSLT_table are stringent and must be followed carefully. All
associated transformation elements must be in the correct position with valid parameters.
During transformation, FrameSLT performs a comprehensive validation of all
FSLT_table structures and will abort the process if any pieces are invalid or out of
place. Although these rules place added responsibility on you as a stylesheet designer,
they provide the distinct advantage of helping to ensure that your tables generate without
error and look exactly as you had intended.
Tip: You can select FrameSLT > Check Stylesheet before launching a transformation

to ensure that your tables are error-free.

Basic steps for creating a valid FSLT_table structure
Creating an FSLT_table structure is similar to creating a normal FrameMaker table
structure, in that you must place the required component elements in the correct order
and hierarchy to satisfy FrameMaker’s table requirements. Like real tables, your
FSLT_table structures must have certain elements, such as the table, body, a row, and
at least one cell. Other transformation elements are optional, much like their FrameMaker
counterparts, such as the heading and the footing.
To create an FSLT_table structure, you might follow these general steps:
 1 Insert an FSLT_table element, specifying the number of columns and other

important settings.
 2 Insert an FSLT_tablebody element, as a child of the FSLT_table element.
 3 Insert an FSLT_tablerow element, as a child of the FSLT_tablebody element,

specifying the XPath expression for row generation. For more information, see
“Generating rows with FSLT_tablerow” on page 101.

 4 Insert FSLT_tablecell elements under the FSLT_tablerow element. The number
of cell elements must match the number of columns you specified at the FSLT_table
element.

At this point, you have a valid FSLT_table structure, with all the basic requirements. You
can then begin to add more elements as needed to complete the table, such as heading
or footing elements, and contents for the table cells.

Complete FSLT_table structure example
The following figure illustrates a complete two-column FSLT_table structure, with an
optional table heading and some contents within the cells. The attributes have been
condensed for space considerations:

Chapter 5 Transformation Element Reference

FrameSLT 2.3 101

This table has two columns, as evidenced by the two FSLT_tablecell elements in
each FSLT_tablerow element. Each FSLT_tablecell element contains a Body
element, which may contain any text and is left as-is like any other non-transformation
element. This table does not have a title or a footing, but if it did, those elements would be
in the same positions that you would expect to see them in a normal FrameMaker table.

Generating rows with FSLT_tablerow
FSLT_tablerow is the primary generation element that causes your tables to grow.
Each FSLT_tablerow element has an XPath expression, which performs normal
queries of your specified source files. For each XPath match, a new row is generated,
using the subordinate FSLT_tablecell elements as the template. You may have as
many FSLT_tablerow elements as desired, with each being processed in order and
generating rows as appropriate. All other transformation table elements contain no XPath,
making them essentially static templates.
FSLT_tablerow elements initiate row generation only and do not extract any content
from your source files. However, your FSLT_tablecell elements can contain any
nature of valid transformation elements which may bring in content. Any time
FSLT_tablerow makes a match and generates a row, the normal rules of context
inheritance apply and subordinate transformation elements are passed the context of the

Chapter 5 Transformation Element Reference

102 FrameSLT 2.3

XPath match. As always, though, you may choose whether or not to use that context, on
an element-by element basis. For more information, see “About cascading contexts” on
page 74.
Tip: If you know you want a particular row to be generated only once in all cases, your

XPath should be a generic expression that is guaranteed to make a single match.
For example, you may always want a single heading row, without any concern for
the particulars of an XPath query. In this case, you could use the expression /* on
the Current source file, which will always cause a single match of the
highest-level element of the stylesheet.

Sorting generated table rows with FSLT_sort
Using an FSLT_sort element as the first child of an FSLT_tablerow element, you can
sort the generated rows by an XPath-based alphabetical or numerical criterion. You can
even sort rows generated by multiple sibling FSLT_tablerow elements. This
functionality of FSLT_sort is unique to FrameSLT and has no counterpart in XSLT. For
more information, see FSLT_sort and especially “Special note on using FSLT_sort with
FSLT_tablerow” on page 98.

Other FSLT table component element setups
Table transformation elements other than FSLT_table and FSLT_tablerow simply
require you to specify an element tag for their counterparts in the generated table. In most
respects, they perform a simple templating function, laying out a precise table structure
that FrameSLT can follow to generate the final table.

Checking an FSLT_table structure before transformation
Because of the strong possibility for errors, you should validate your stylesheets by
selecting FrameSLT > Check Stylesheet before running transformations. This function
performs the same pre-processing validation that occurs during transformation and will
help you avoid aborts during actual transformations.

FSLT_table processing
Before transforming an FSLT_table structure, FrameSLT performs comprehensive
validation that includes:

• Checking the required hierarchy and presence of transformation elements
• Verifying that specified element tags are valid for the components they will represent
• Ensuring that all FSLT_tablerow elements contain the same number of
FSLT_tablecell children as there are columns specified at the FSLT_table
element.

Afterwards, FrameSLT generates a table based on the template that the FSLT_table
structure represents. Finally, FrameSLT uses the XPath to generate rows, based on
settings at the FSLT_tablerow elements. For more information, see “Generating rows
with FSLT_tablerow” on page 101.
For any heading or footing component whose FSLT_tablerow XPath expressions make
no matches, no rows are generated, and therefore those components are removed from
the final table. If the same situation occurs with the FSLT_tablebody element, the entire
table is removed, because a FrameMaker table must have a body. No warning is given if
table generation fails due to unsuccessful XPath queries.

Chapter 5 Transformation Element Reference

FrameSLT 2.3 103

FSLT_table attributes

FSLT_table example
To see a functional example of an FSLT_table element structure, see the
Sample7_Table.fm file that came with FrameSLT.

FSLT_tablebody
The FSLT_tablebody element is a required component of an FSLT_table element
structure. It acts as a simple template placeholder for the “real” table body element that
will appear in the final table.

FSLT_tablebody processing
See FSLT_table.

FSLT_tablebody attributes

FSLT_tablebody example
See FSLT_table.

FSLT_tablecell
The FSLT_tablecell element is a required component of an FSLT_table element
structure. It acts as a simple template placeholder for a “real” table cell element that will
appear in the final table.

FSLT_tablecell processing
See FSLT_table.

FSLT_tablecell attributes

Attribute Description
element_tag Valid table element tag from the stylesheet’s EDD. An invalid tag

will abort the transformation.

format Valid table format from the stylesheet’s template.

num-columns Number of columns in the final table. Each FSLT_tablerow
element in the template structure must contain this same
number of FSLT_tablecell elements.

col_widths Widths for each individual column, in inches.

Attribute Description
element_tag A valid table body element tag from the stylesheet’s EDD.

Attribute Description
element_tag A valid table cell element tag from the stylesheet’s EDD.

Chapter 5 Transformation Element Reference

104 FrameSLT 2.3

FSLT_tablecell example
See FSLT_table.

FSLT_tableheading
The FSLT_tableheading element is an optional component of an FSLT_table
element structure. It acts as a simple template placeholder for a “real” table heading
element that will appear in the final table.

FSLT_tableheading processing
See FSLT_table.

FSLT_tableheading attributes

FSLT_tableheading example
See FSLT_table.

FSLT_tablefooting
The FSLT_tablefooting element is an optional component of an FSLT_table
element structure. It acts as a simple template placeholder for a “real” table footing
element that will appear in the final table.

FSLT_tablefooting processing
See FSLT_table.

FSLT_tablefooting attributes

FSLT_tablefooting example
See FSLT_table.

FSLT_tablerow
The FSLT_tablerow element is a required component of an FSLT_table element
structure. It acts as a template placeholder for a “real” table row element that will appear
in the final table, and it contains the XPath expression that contributes to the generation
of table rows.

FSLT_tablerow processing
See FSLT_table.

Attribute Description
element_tag A valid table heading element tag from the stylesheet’s EDD.

Attribute Description
element_tag A valid table footing element tag from the stylesheet’s EDD.

Chapter 5 Transformation Element Reference

FrameSLT 2.3 105

FSLT_tablerow attributes

FSLT_tablerow example
See FSLT_table.

FSLT_tabletitle
The FSLT_tabletitle element is an optional component of an FSLT_table element
structure. It acts as a simple template placeholder for a “real” table title element that will
appear in the final table.

FSLT_tabletitle processing
FSLT_tabletitle will cause a title to be added to the generated table. Because the
title of a table is controlled by the table format, this element will cause a format override if
the specified table format at the FSLT_table element does not included a title. If it does,
the title will appear in the position indicated in the specified format. The final title will
contain any content that the FSLT_tabletitle element contained.
For more processing information, see FSLT_table.

FSLT_tabletitle attributes

FSLT_tabletitle example
See FSLT_table.

Attribute Description
element_tag A valid table row element tag from the stylesheet’s EDD.

select XPath expression for the query. For each match, a row is
added to the table, using the template contained within the
FSLT_tablerow element. The context of each match is
passed down to any transformation elements contained within
the FSLT_tablerow element. For more information, see
“Generating rows with FSLT_tablerow” on page 101.

source_file Source file or book for the XPath query. For more information
on source files, see “Source file details” on page 71.

starting_context The starting context for the XPath query, either as inherited,
implied by the XPath, or the transformation element itself. This
option is only available if the element is querying the “current”
stylesheet or document. For more information, see “About
starting contexts” on page 72.

Attribute Description
element_tag A valid table title element tag from the stylesheet’s EDD.

Chapter 5 Transformation Element Reference

106 FrameSLT 2.3

FSLT_template
FSLT_template is a placeholder element for a “template” that is stored in another flow,
or another document. A template can be any piece of structured content, including other
transformation elements. During transformation, when FrameSLT encounters an
FSLT_template element, it finds the specified template and copies it into the stylesheet,
and resumes transformation. Because FSLT_template elements can remain in a
stylesheet document following transformation, they provide a means of transforming a
stylesheet repeatedly using any nature of transformation setups, without having to create
duplicate files to preserve the original stylesheet.
Note: FSLT_template has some loose similarities to its XSLT counterpart,

xsl:template, but operates in a fundamentally different fashion. If you are
familiar with XSLT, do not try to equate the two.

FSLT_template processing
In comparison to other transformation elements, FSLT_template processing is simple.
When FrameSLT encounters this element during transformation, it looks for the
corresponding template, identified by the template_ID attribute. If the corresponding
template is found, the content is copied into the stylesheet as the contents of the original
FSLT_template element.
When searching for the corresponding template, FrameSLT is actually searching for
another FSLT_template element with the same specified ID. When found, FrameSLT
copies the contents of the “source” FSLT_template element into the contents of the
original FSLT_template element, and continues transformation.
FSLT_template does not use any XPath. It uses the template ID only to locate the
source template.

Locations for “source” FSLT_template elements
When searching for a source FSLT_template element, FrameSLT looks in two places,
in this order:
 1 An “FSLT_template” flow in the specified source document, if it exists.
 2 The main flow of the specified document.

Note: If the source document is specified as “Current,” that is, the stylesheet itself,
FrameSLT looks in the “FSLT_template” flow only.

The source FSLT_template element can be anywhere in these locations, nested in any
nature of structural organization. FrameSLT looks only for an element with the same
template_ID attribute, and if found, copies the contents of it into the original
FSLT_template in your stylesheet document.
Tip: For the source file, you can also specify a book. In this case, FrameSLT will step

through the entire book looking for the corresponding source FSLT_template
element. Note that for each chapter file, it will attempt to look in the
“FSLT_template” flow first.

About the “FSLT_template” flow
As mentioned in previous sections, FrameSLT always searches in an “FSLT_template”
flow first, if it exists. The primary intent of this functionality is to allow you to put templates
on the reference pages of your stylesheet. That is, you can create a new reference page,

Chapter 5 Transformation Element Reference

FrameSLT 2.3 107

create a flow on it called “FSLT_template,” and put all your templates there. In this
manner, your templates always remain with your document.
You do not necessarily need to use an “FSLT_template” flow at all, if you want to store
your templates in the main flow of a separate document. This functionality is provided
simply as a convenience should you choose to use it.
To create an “FSLT_template” flow on your reference pages, follow these general steps:
 1 Select View > Reference Pages.
 2 Select Special > New Reference Page.
 3 In the add page dialog, enter FSLT_template.

Note: The name of the page actually doesn’t matter, but it may help you keep your
reference pages in order.

 4 On the new reference page, which was probably added at the end of the pages, draw
a new text frame.

 5 Select the object pointer tool, right-click on the new frame, and select Object
Properties.

 6 Under Flow Tag, enter FSLT_template, and select Autoconnect.
Note: The flow name must be absolutely correct, including case.

 7 Begin a structure tree in the flow just like you would the main flow, and place the
desired source FSLT_template elements anywhere you prefer.

Using FSLT_template to facilitate complex re-transformations
Normally, many transformation element types must be removed following a
transformation, such as FSLT_for-each and FSLT_table. Therefore, to use these
types of elements “as is,” you must create a duplicate document when transforming if you
want to preserve the original stylesheet.
However, because FSLT_template can remain in a stylesheet through repeated
transformations, you can use it to retrieve complex transformation setups from elsewhere
“on-the-fly.” That is, it can act as a placeholder for a detailed transformation setup that
gets copied in as original at the time of transformation, every transformation. This allows
you to re-transform the same document repeatedly without any loss of integrity,
regardless of the setup.
Note: During transformation, the first thing that FrameSLT does to FSLT_template is

delete all its current contents. Then, it finds the corresponding source element
and copies over the content. In this manner, the process is always a pure
“refresh.”

FSLT_template attributes
Note: When a source FSLT_template is located and the content is copied over, only

the content gets copied. The source FSLT_template element itself is never

Chapter 5 Transformation Element Reference

108 FrameSLT 2.3

copied. Therefore, the source_file and fslt_element attributes are
irrelevant for source elements.

FSLT_template example
The following figure shows an “original” FSLT_template element in the main flow of a
stylesheet, and afterwards the corresponding template element in the “FSLT_template”
flow on a reference page:

FSLT_template element in the main flow

Attribute Description
template_ID ID for the template, which must be identical between the original

and source FSLT_template elements. This value can be any
alphanumeric string up to 255 characters.

source_file Source file or book to search for the source FSLT_template
element. This attribute is only relevant for “original” elements.

fslt_element Whether or not to preserve the FSLT_template element
following a transformation. This attribute is only relevant for
“original” FSLT_template elements. For more information, see
“About preserving transformation elements after a
transformation” on page 75.

Chapter 5 Transformation Element Reference

FrameSLT 2.3 109

FSLT_template element in the “FSLT_template” flow, on a reference page

Note that the template_ID attributes are the same. During transformation, when the
original FSLT_template element is encountered, all its contents are deleted, and the
contents of the source element are copied in. For this example, the original
FSLT_template element has no contents, so nothing needs to be deleted.
In the moment after these two steps are completed, the setup in the original
FSLT_template element would look as follows:

Chapter 5 Transformation Element Reference

110 FrameSLT 2.3

Setup the moment after processing the FSLT_template element

Note that the setup pictured above is only momentary, and you should never actually see
it. FrameSLT should continue transforming, starting with the content it just copied in,
including the FSLT_for-each, FSLT_sort, and FSLT_value-of elements.

FSLT_value-of
FSLT_value-of is one of the primary elements for retrieving content from your source
files. It performs an XPath query and copies over the contents of any element or attribute
that it matches, normally discarding all element tags of any matched and subordinate
elements, as applicable. At a fundamental level, FSLT_value-of is analogous to its
XSLT counterpart value-of, except that it also allows special provisions for special
FrameMaker element types.

FSLT_value-of processing
FSLT_value-of queries your source files based on the specified XPath, and for any
element that it matches, it copies the contents of it to the stylesheet. For “normal”
elements, it does not copy the matched element tag itself, and normally does not copy
any descendant element tags. It does, however, retain all subordinate content, essentially
merging it all together as applicable. Because of this functionality, FSLT_value-of is
frequently used to extract content from a source file without the element definition(s), for

Chapter 5 Transformation Element Reference

FrameSLT 2.3 111

the purpose of retagging it once in the stylesheet. FSLT_value-of can also match and
retrieve values from attributes. If a matched attribute has multiple values, only the first
value is retrieved.
Tip: FSLT_value-of can also emit the value of a previously-defined parameter. For

more information, see “FSLT_value-of attributes” on page 111.
FSLT_value-of includes several options for handling special FrameMaker element
types, which is unique to FrameSLT. Certain element types, including graphics,
cross-references, markers, variables, and equations, are essentially “empty” element
tags with the respective FrameMaker object behind them. If their element tags were
removed, they would likewise be removed from the document. Therefore, on a
case-by-case basis, you can select how to handle these element types, either to
preserve, remove, or in some cases, convert to text. These settings apply to the element
matched by the XPath, and any descendant elements. In XSLT, if a value-of element
acted on any of these special element types in their XML formats, you would always lose
them during the content retrieval process.
FSLT_value-of continues matching and extracting content until all XPath matches
have been exhausted. If your XPath matches multiple elements with paragraph content,
your resulting content in the stylesheet is likely to contain multiple paragraphs wrapped
within a single element, which is normally not recommended.

FSLT_value-of attributes
Attribute Description
select XPath expression for the query. The contents of any element

or attribute matched will be copied to the stylesheet.
Note: You may also specify a parameter name, preceded

by a dollar sign ($). If the parameter is defined, the
value is copied to the stylesheet. If it is not defined,
the string <UNDEFINED PARAMETER> is printed
instead and the transformation continues. To be
defined, a parameter must be defined by an
FSLT_param element previously in the
transformation process.

source_file Source file or book for the XPath query. For more information
on source files, see “Source file details” on page 71.

xref_action

marker_action

variable_action

equation_action

graphic_action

Individual settings for handling special FrameMaker element
types within any content copied over by FSLT_value-of. For
more information, see “FSLT_value-of processing” on
page 110.

Chapter 5 Transformation Element Reference

112 FrameSLT 2.3

FSLT_value-of example
The following figure shows an FSLT_value-of element configured to match Heading
elements in Building Cabinets.fm:

This FSLT_value-of element is set to preserve all special element types within the
retrieved content. Therefore, if the matched Heading elements contain any markers,
graphics, or other special elements, they will be preserved in the final output with their
original element definitions.
As an example, consider the following Heading element, with a SampleMarker marker
element as a child:

fslt_element Whether or not to preserve the FSLT_value-of element
following a transformation. For more information, see “About
preserving transformation elements after a transformation” on
page 75.

starting_context The starting context for the XPath query, either as inherited,
implied by the XPath, or the transformation element itself. This
option is only available if the element is querying the “current”
stylesheet or document. For more information, see “About
starting contexts” on page 72.

Attribute Description

Chapter 5 Transformation Element Reference

FrameSLT 2.3 113

If the FSLT_value-of element in the previous figure matched this element, the following
would be the results:

Note how the content from the Heading element is placed where the FSLT_value-of
element used to be. The Heading element tag has been removed as normal, but the
SampleMarker tag and the associated marker has been preserved.

FSLT_when
The FSLT_when element is a required component of an FSLT_choose element
structure. It contains the XPath that performs the conditional evaluations and determines
which content, if any is added to the stylesheet.
FSLT_when supports basic parameter evaluation for the XPath, for example:

$MyParameter="ThisValue"

For any parameter evaluation that is more complex, such as with the use of functions, you
should start the XPath with a “to-self” axis, then put the evaluation into a predicate. For
example:

.[contains("$MyParameter", "ThisValue")]

FSLT_when processing
See FSLT_choose.

FSLT_when attributes

FSLT_when example
See FSLT_choose.

Attribute Description
test XPath expression to test for a match. The contents of any

element or attribute matched will be copied to the stylesheet.

source_file Source file or book for the XPath query. For more information
on source files, see “Source file details” on page 71.

Chapter 5 Transformation Element Reference

114 FrameSLT 2.3

FrameSLT 2.3 115

Chapter 6
External Calls to FrameSLT

Like many FrameMaker plugins, you can make external calls to FrameSLT to invoke
XPath related functions, and use the results to perform customized actions within
FrameMaker. Specifically, you can call FrameSLT to:

• Parse an XPath expression and find applicable nodes
• Allocate and deallocate memory associated with parsed XPath expressions

The exposure of these functions through the FrameMaker API essentially transforms
FrameSLT into an XPath-based query engine that you can call for any nature of content
management functions feasible within FrameMaker. For example, you could:

• Create a customized system of text insets or other content reuse
• Create a custom plugin that performs structure alterations after an XML import,

without having to add complex code to an import/export client
• Create an automated system of assigning condition tags to elements based on

attributes or element names
One of the keys to content management is being able to locate the content in question.
Because XPath allows you to find very specific node instances, FrameSLT XPath opens
the door to powerful content management, limited only by your imagination and end
goals.

How to send an external call to FrameSLT
To call FrameSLT, you can use one of three methods:

• With the FDK F_ApiCallClient() function, from another API client If you are
working on another FDK client, you can use F_ApiCallClient() to call FrameSLT.
This function is part of the normal FDK library and does not require any changes to
your normal project settings. For more information on the function itself, see the FDK
Developer’s Reference provided by Adobe with the FDK.

• With FrameScript FrameScript®, a scripting tool by Finite Matters, Ltd®, has a
comparable function for calling FDK clients, CallClient. When called from
FrameScript, FrameSLT behaves identically to a regular API call.

• With FrameAC FrameAC by Mekon® (www.mekon.com) is a plugin that enables
developers to use Visual Basic to control FrameMaker. FrameAC also provides the
ability to script calls to other API clients.

For any supported operation, you pass a string to FrameSLT which contains a command
and any applicable parameters, and FrameSLT sends back a numeric code indicating the
results. The syntax of these strings is the same for either API or scripting calls, and is
explained in detail in this document.
Tip: The call descriptions and examples in this document are written from an FDK/API

perspective, using F_ApiCallClient(). If you are using FrameScript or

Chapter 6 External Calls to FrameSLT

116 FrameSLT 2.3

FrameAC, the basic call syntax will be the same, sent using the mechanism
supported by the respective tool.

General information on external calls
Before you attempt to call FrameSLT, note the following:

• Calls and returns sometimes involve document and element IDs, instead of names.
For example, when call FrameSLT to find an element node with XPath, it will return
the ID of the element it finds. Therefore, to use external calls effectively, you must be
familiar with element and document IDs and how to convert them into the desired
results.

• The default delimiter string between arguments in a call to FrameSLT is three dashes
(---). This delimiter can be changed with a ChangeCallDelimiter call.

• Due to the nature of F_ApiCallClient(), FrameSLT can only return a single
integer after a call. No strings or other values can be returned. Therefore, all returns
are in integer format and may represent items such as sequence numbers, element
IDs, and error codes.

• Several calls to FrameSLT return zero (0) to indicate success, consistent with the
behavior of other FDK functions. However, F_ApiCallClient() also returns zero if it fails
to communicate at all with the specified API client. If you aren’t sure whether your
calls are reaching FrameSLT, you can call the special Hello command to verify that
communications are getting through.

• With the exception of XPath expressions, call strings are generally not case-sensitive.
For example, to parse an XPath string, you can send any case variation of the
ParseXPath command name, such as PARSEXPATH or parsexpath.

Typical sequences of events
If you want to use XPath to navigate a document, you might:
 1 First call ParseXPath to parse the expression(s) and retrieve internal sequence

number(s)
 2 Call FindNextNode to perform the navigation, sending it the sequence number you

retrieved from ParseXPath.
 3 After each XPath match (FindNextNode call), you could call RetrieveAttrMatch

to retrieve the index of the matched attribute, if your expression matches attributes.
 4 Once a query has exhausted all matches, you could reset the sequence with

ResetSequence and start the query again, perhaps with a different context node or
document.

If you want to run a Node Wizard script, you can simply call RunNWScript with the
correct parameters. No preliminary steps with FrameSLT are necessary.
If you want to transform a file, you can simply call TransformFile with the correct
parameters. No preliminary steps with FrameSLT are necessary.

Call reference
This section details the external calls you can make to FrameSLT.

Chapter 6 External Calls to FrameSLT

FrameSLT 2.3 117

AllocateNodeHandlers
Clears the space used to hold parsed XPath data.

Syntax
F_ApiCallClient("FrameSLT", "AllocateNodeHandlers");

Usage description
This call clears and allocates the memory space used to hold parsed XPath data. No
deallocation call is required beforehand. All parsed XPath data will be deleted, and any
sequence numbers retrieved by previous ParseXPath calls will be rendered invalid.
Note: In previous versions of FrameSLT, this call was required before you could parse

XPath. This is no longer true. All memory management is handled internally and
you do not ever need to call AllocateNodeHandlers. It is maintained in the
current version for general purpose and backwards compatibility only.

Returns
F_ApiCallClient() returns one of the following values after a
AllocateNodeHandlers call:

ChangeCallDelimiter
Changes the delimiter for external call arguments. The default upon startup is three
dashed (“---”).

Syntax
F_ApiCallClient("FrameSLT", "ChangeCallDelimiterNewDelimiter");

Note: The new delimiter directly follows the ChangeCallDelimiter command. Do
not separate them with the old delimiter. Anything following the command will be
considered the new delimiter.

Returns
F_ApiCallClient() returns one of the following values:

Value Meaning
0 Allocation was successful.

Note: 0 is also returned if a communication error occurs with FrameSLT. If
you suspect that the command didn’t work, consider calling Hello
to verify that FrameSLT is active.

1 General syntax error in call string.

Value Meaning
0 Delimiter successfully changed.

Note: 0 is also returned if a communication error occurs with FrameSLT.
If you suspect that the command didn’t work, consider calling
Hello to verify that FrameSLT is active.

Chapter 6 External Calls to FrameSLT

118 FrameSLT 2.3

ChangeCallDelimiter syntax example
F_ApiCallClient("InsetPlus", "ChangeCallDelimiter++++");

DeallocateNodeHandlers
Clears the space used to hold parsed XPath data. This call performs the same operation
as AllocateNodeHandlers.

Syntax
F_ApiCallClient("FrameSLT", "DeallocateNodeHandlers");

Usage description
This call clears and allocates the memory space used to hold parsed XPath data. No
allocation call is required beforehand. All parsed XPath data will be deleted, and any
sequence numbers retrieved by previous ParseXPath calls will be rendered invalid.
Note: In previous versions of FrameSLT, this call was recommended for cleanup

following XPath usage, because memory handling required more management
steps. This is no longer true. All memory management is handled internally and
you do not ever need to call DeallocateNodeHandlers. It is maintained in
the current version for general purpose and backwards compatibility only.

Returns
F_ApiCallClient() returns one of the following values after a
DeallocateNodeHandlers call:

FindNextNode
Finds element nodes based on parsed XPath data, using a sequence number returned by
ParseXPath.

Syntax
F_ApiCallClient("FrameSLT",

 "FindNextNode---SeqNumber---Document---ContextElemId---Flow");

1 Unrecognized command. Make sure you spelled
“ChangeCallDelimiter” correctly.

2 Incorrect number of arguments in the call string. Make sure you provided a
new delimiter after ChangeCallDelimiter.

Value Meaning

Value Meaning
0 Deallocation was successful.

Note: 0 is also returned if a communication error occurs with FrameSLT. If
you suspect that the command didn’t work, consider calling Hello
to verify that FrameSLT is active.

1 General syntax error in call string.

Chapter 6 External Calls to FrameSLT

FrameSLT 2.3 119

where:

Usage description
FindNextNode uses parsed XPath data to find an element or attribute node, within a
FrameMaker document you specify. The parsed XPath is identified by a sequence
number returned by ParseXPath, so you must call ParseXPath to parse the XPath
expression before you can use FindNextNode.
FindNextNode requires you to send the ID of a context element, which indicates the
starting point for the query. XPath works in a sequential fashion, beginning at some
established place within the structure tree and matching nodes until it runs out of
matches. The matching is always based on some evaluation of context, which is true
even for the first match.
If your XPath expression begins with a forward slash (that is, a go-to-root axis), the
context element ID sent is actually ignored, because the first axis forces the context to the
root. For example, with the following expression:

//Body

...the first axis will force the query to begin at the structural root, after which it will match
any Body elements that are descendants of the highest-level element. With an
expression such as this, the context element ID is irrelevant, and you can simply send a
zero (0).

SeqNumber Sequence number returned by ParseXPath, representing the
desired parsed XPath expression.

Document One of the following:
• A document object handle in integer form (integer form of

the FDK F_ObjHandleT type)
• A fully-qualified path name of an open document

In either case, the document to be queried must be currently
open.

ContextElemId The object handle of the context element, in integer form
(integer form of the FDK F_ObjHandleT type). For more
information on this parameter, see “Usage description” on
page 119.

Flow One of the following:
• A flow object handle in integer form (integer form of the

FDK F_ObjHandleT type)
• A flow name, case-sensitive

To indicate the main flow, you may also send “0” or “Main”. If
this argument is not sent at all, FrameSLT will assume the main
flow.
Note: The flow ID/name is only required if you send zero (0)

for the ContextElemId. If you send a valid context
element ID, you may send zero for the flow, or omit
the argument entirely. For more information, see
“Usage description” on page 119.

Chapter 6 External Calls to FrameSLT

120 FrameSLT 2.3

Conversely, if the XPath does not force the query to start at the root, you must send a
context element ID that represents the starting point. For example, the following
expression:

Body

...will match any Body elements that are children of the starting context element,
whatever that may be. Therefore, this type of expression requires you to send the ID of
that element from which the query should begin.
Note: Even when required, the context element ID is only used for the first match,

because all subsequent matches either remember the original context or use a
new context as established by the query itself. However, you should send the
original context element ID with each FindNextNode call, otherwise FrameSLT
may assume an error has occurred and return zero. This is true even if you sent
originally sent a zero (0). If so, all subsequent FindNextNode should send zero
as well.

You can call FindNextNode on any currently-parsed XPath expression, provided that
you have a valid sequence number. Each sequence keeps track of its own query, and will
always pick up where it left off with each subsequent FindNextNode call. You do not
need to perform any steps to manage individual XPath queries, other than to simply call
FindNextNode.
As mentioned earlier, each XPath query begins at some established starting point and
matches nodes until there are none left to match. At the end or at any point in between,
you can call ResetSequence to clear the internal sequence and start the query anew.
After a ResetSequence call, you can send a new context element ID with
FindNextNode, as applicable to the respective XPath expression.
Tip: A repeat call of ParseXPath on an already-parsed expression will also reset the

respective sequence.
The flow name/ID is only required if you do not send a context element ID. If you do send
a context element ID, the flow to query will be derived from that element, and you should
simply send zero for the flow. Conversely, if you send zero for the context element ID, a
flow ID or name is required such that FrameSLT knows which structure tree to query.
Keep in mind that any FrameMaker document flow can be structured, and FrameSLT
supports XPath queries on any structured flow.

Returns
F_ApiCallClient() returns one of the following values after a FindNextNode call:

Value Meaning
0 No nodes found. When zero is returned, the sequence has been exhausted

and all nodes have been located by previous FindNextNode calls. To start
the sequence over, you can call ResetSequence. Without resetting the
sequence, FindNextNode will return zero for any future calls.
Note: 0 is also returned if a communication error occurs with FrameSLT.

If you suspect that the command didn’t work, consider calling
Hello to verify that FrameSLT is active.

1 General syntax error in call string
2 Incorrect number of arguments sent with the command

Chapter 6 External Calls to FrameSLT

FrameSLT 2.3 121

FindNextNode syntax examples
F_ApiCallClient("FrameSLT",

 "FindNextNode---21---67108880---0”);

F_ApiCallClient("FrameSLT",

 "FindNextNode---21---67108880---0---503586820");

F_ApiCallClient("FrameSLT",

 "FindNextNode---21---C:\MyDocs\Myfile.fm---0---Main");

FindNextNode code sample
The following example shows the basic syntax of an actual FindNextNode call.
Note: Because the parsed XPath expression begins with a “go-to-root” axis, the

context element is not important. Otherwise, you would need to have that ID as
well.

. . .

F_ObjHandleT docId, elemId;

UCharT arg[50];

UIntT sequenceNumber;

IntT returnVal;

. . .

/* Parse the XPath */

sequenceNumber =

 F_ApiCallClient("FrameSLT", "ParseXPath---//Section/Body[1]---True");

/* Get a document ID */

docId = F_ApiGetId(0, FV_SessionId, FP_ActiveDoc);

/* Form the argument for the FindNextNode call */

F_Sprintf(arg, "FindNextNode---%d---%d---0---Main", sequenceNumber, docId);

4 Bad sequence number. Check to make sure you have sent the sequence
number returned by ParseXPath.

6 Bad document argument. An invalid document ID or filename was sent.
Make sure the argument represents the ID or filename of a valid, open
document.

7 Bad flow argument. An invalid flow name or ID was sent.

Any
integer
greater
than
100

An integer form of a matched element ID. You can convert this integer back
to an object handle and use it to manipulate the element as normal. See the
examples for more information.
Note: If your XPath expression matches attribute nodes instead of

element nodes, the return will still be an element ID, representing
the ID of the parent element. If you would like to retrieve the index
of the matched attribute nodes, you can call
RetrieveAttrMatch after FindNextNode.

Value Meaning

Chapter 6 External Calls to FrameSLT

122 FrameSLT 2.3

/* Call FrameSLT to find the next node */

returnVal = F_ApiCallClient("FrameSLT", (StringT)arg);

/* Convert the returned integer ID back to an object handle */

elemId = (F_ObjHandleT)returnVal;

/* Report */

if(elemId > 20)

 F_ApiAlert("Found an element.", FF_ALERT_CONTINUE_WARN);

else if(elemId > 0)

 F_ApiAlert("An error occurred.", FF_ALERT_CONTINUE_WARN);

else

 F_ApiAlert("Nothing found. Sequence is spent.", FF_ALERT_CONTINUE_WARN);

Hello
Determines if FrameSLT is initialized and receiving external calls.

Syntax
F_ApiCallClient("FrameSLT", "Hello");

Usage description
Hello is a simple call to ensure that FrameSLT is available and responding to external
calls.

Returns
F_ApiCallClient() returns one of the following values after a Hello call:

Hello syntax example
. . .

IntT returnVal;

. . .

returnVal = F_ApiCallClient("FrameSLT", "Hello");

if(returnVal < 17)

Value Meaning
0 Communication with FrameSLT failed. Make sure that FrameSLT is

initialized and running. Also, make sure that FrameSLT is properly
registered in the maker.ini file under the name “FrameSLT.”

16 An evaluation copy of FrameSLT is installed, but the license is expired.
External calls will not work.

17 Deprecated. This used to be the return for FrameSLT Lite, which no longer
exists as of version 2.2.

18 FrameSLT installed and ready.

Chapter 6 External Calls to FrameSLT

FrameSLT 2.3 123

 F_ApiAlert("Error. FrameSLT is not ready.", FF_ALERT_CONTINUE_WARN);

ParseXPath
Parses an XPath expression, returning an internal sequence number for node queries.

Syntax
F_ApiCallClient("FrameSLT", "ParseXPath---Expression---ReportErrors")

where:

Usage description
ParseXPath parses an XPath expression, and if successful, returns an internal
sequence number that you will need for FindNextNode node queries. You can call
ParseXPath for multiple expressions, and provided that you store the sequence
numbers, you can perform independent queries based on any of them afterwards. In
other words, subsequent ParseXPath calls start new internal sequences and do not
delete any previously parsed data.
The returned sequence number is how FrameSLT identifies a parsed XPath expression
and is a required argument for FindNextNode calls. Each unique expression that is
parsed will return a unique sequence number. All parsed data will remain in memory
unless cleared with an AllocateNodeHandlers. Normally, memory constraints should
not be a concern, unless you are parsing an excessive amount of expressions such as a
few hundred or more. In this case, you may consider periodic calls to
AllocateNodeHandlers to free up some memory. Note, however, that an
AllocateNodeHandlers call will delete all currently-parsed data and render any
previously-retrieved sequence numbers invalid.
Note: All statements made thus far about parsed XPath data remaining in memory

assume that you have your memory constraints set to a reasonable capacity. For
more information on setting memory constraints, see “Preferences” on page 10.
For a discussion on memory constraints, see “Memory settings” on page 15.

Returns
F_ApiCallClient() returns one of the following values after a ParseXPath call:

Expression XPath expression to parse.

ReportErrors Indicates whether to report parsing errors or not, either True or
False. If you specify True, FrameSLT will produce the
standard error report if a parsing error is encountered.
Otherwise, the return value will indicate if a parsing error
occurs, but you will not know the nature of the error.

Value Meaning
0 Communication error with FrameSLT.
1 General syntax error in call string.
2 Incorrect number of arguments sent with the command

Chapter 6 External Calls to FrameSLT

124 FrameSLT 2.3

ParseXPath syntax example
sequenceNumber =

 F_ApiCallClient("FrameSLT", "ParseXPath---//Section/Body[1]---True");

ResetSequence
Resets a parsed, internal XPath sequence for reuse.

Syntax
F_ApiCallClient("FrameSLT", "ResetSequence---SequenceNumber");

where:

Usage description
ResetSequence resets an internal XPath sequence such that it can be used for a new
query. Once ResetSequence is called, you can begin a new query, using a different
context node if desired. For more information on sequence behavior and context nodes,
see “FindNextNode” on page 118.
As an example, consider the following XPath expression:

//Body

After this expression is parsed, the first FindNextNode call will find the first Body
element in the document. The next call finds the next Body element, and so on. When
you reset the sequence, however, FindNextNode begins again at the root, finding the
first Body element again.
The concept of resetting a sequence is necessary because an XPath query works in a
sequential, contextual manner, which has a definitive starting and ending point. Once
FindNextNode has exhausted a sequence and reached the end, the only logical way to
use the sequence again is to reset it entirely and resume the query at some specified
starting context. If you run a subsequent FindNextNode pattern on the same XPath
expression, same original structure, and same context, it will always find the same nodes
as the previous run.

3 The XPath contains an error and could not be parsed. To find out the nature
of the error, set the third argument of ParseXPath to True to produce the
error report.

Any
other
number
over 100

A sequence number indicating that the parse was successful. This
sequence number will be necessary to perform queries with the XPath
using FindNextNode.

Value Meaning

SequenceNumber Valid sequence number for a previously-parsed XPath
expression, as returned by a ParseXPath call.

Chapter 6 External Calls to FrameSLT

FrameSLT 2.3 125

Returns
F_ApiCallClient() returns one of the following values after a ResetSequence call:

RetrieveAttrMatch
Retrieves the index (+100) of an attribute as matched by an XPath expression, following
a FindNextNode call.

Syntax
F_ApiCallClient("FrameSLT", "RetrieveAttrMatch---[SequenceNumber]");

Usage description
Note: The index returned by RetrieveAttrMatch is actually the index plus 100, in

order to reserve the lower return numbers for error reporting. For any value
returned by RetrieveAttrMatch, you should subtract 100 from it before using
it as an index.

RetrieveAttrMatch retrieves the index of the attribute matched by the most recent
call to FindNextNode. This call is provided for XPath expressions that match attribute
nodes, because FindNextNode returns element IDs only. If the respective XPath
expression does not match attribute nodes, this call will return 99, corresponding to an
actual index of -1.
As an example, consider the following expression:

//Body/@AttributeA

This expression matches attribute nodes, not element nodes. Specifically, it matches
attribute nodes named “AttributeA” on Body elements. For each match, though,
FindNextNode will return the ID of the parent Body element only. Therefore,
RetrieveAttrMatch allows you to retrieve the index of the matched attribute as well. It
must be called before the next FindNextNode, because each FindNextNode call
resets the value to the most recent match.
The index retrieved by RetrieveAttrMatch corresponds to the attribute index (+100)
of the attribute as if it were stored in an F_AttributesT array, as if retrieved by
F_ApiGetAttributes() on the element returned by FindNextNode.

Value Meaning
0 Reset was successful.

Note: 0 is also returned if a communication error occurs with FrameSLT. If
you suspect that the command didn’t work, consider calling Hello
to verify that FrameSLT is active.

1 General syntax error in call string
2 Incorrect number of arguments sent with the command
4 Bad sequence number. Check to make sure you have sent the sequence

number returned by ParseXPath.

Chapter 6 External Calls to FrameSLT

126 FrameSLT 2.3

Returns
F_ApiCallClient() returns one of the following values after a RetrieveAttrMatch
call:

RetrieveAttrMatch code sample
The following code sample performs an XPath query and reports the values of the
matched attribute(s):

. . .

IntT sequenceNum,

 index;

F_ObjHandleT elemId,

 docId;

F_AttributesT attrs;

UCharT fnnCall[64],

 ramCall[64];

. . .

/* Get the ID of the active document */

docId = F_ApiGetId(0, FV_SessionId, FP_ActiveDoc);

/* Parse the XPath expression, which will match all attributes */

/* of all Body elements */

sequenceNum =

 F_ApiCallClient("FrameSLT", "ParseXPath---//Body/@*---True");

/* Form the call strings we are going to send to FrameSLT to */

/* navigate with the XPath and retrieve the index of matched attributes */

F_Sprintf(fnnCall, "FindNextNode---%d---%d---0---0", sequenceNum, docId);

F_Sprintf(ramCall, "RetrieveAttrMatch---%d", sequenceNum);

/* Get the element ID of the first match of the xpath */

elemId = (F_ObjHandleT)F_ApiCallClient("FrameSLT", (StringT)fnnCall);

Value Meaning
0 Communication error with FrameSLT
1 General syntax error in call string
2 Incorrect number of arguments sent with the command
4 Bad sequence number. Check to make sure you have sent the

sequence number returned by ParseXPath.

Any number
over 98

The attribute index, plus 100. For example, if the call returns 101, the
actual index is 1. If the call returns 99, the actual index is -1, meaning
that there actually is no index. 99 (1-) should only be returned if the
XPath expression matches elements instead of attributes.

Chapter 6 External Calls to FrameSLT

FrameSLT 2.3 127

/* Run this loop for each match of the XPath */

while(elemId)

{

 /* Get the index of the matched attribute from the previous query */

 index = F_ApiCallClient("FrameSLT", (StringT)ramCall);

 /* Get the attributes from the parent element of the matched */

 /* attribute, within which we will be able to find the matched */

 /* attribute according to the index */

 attrs = F_ApiGetAttributes(docId, elemId);

 /* If the attribute has any values, report the first one */

 /* Remember that the returned index is the actual index plus 100 */

 if(index > 99 &&

 attrs.val[index - 100].values.len > 0)

 F_ApiAlert(attrs.val[index - 100].values.val[0],

 FF_ALERT_CONTINUE_WARN);

 else

 F_ApiAlert("<no value>", FF_ALERT_CONTINUE_WARN);

 /* Clear the F_AttributesT array */

 F_ApiDeallocateAttributes(&attrs);

 /* Get the next XPath match */

 elemId = (F_ObjHandleT)F_ApiCallClient("FrameSLT", (StringT)fnnCall);

}

RunNWScript
Runs a Node Wizard script or script event.

Syntax
F_ApiCallClient("FrameSLT",

 "RunNWScript---ScriptName---EventNumber---File---DoReporting")

where:

ScriptName Valid, case-sensitive name of a defined Node Wizard script.
Spaces in script names are permitted.

EventNumber Specific event to run, within the script. Within a script, individual
events are numbered sequentially, starting at 1. If you want to
run the whole script, specify zero (0).

Chapter 6 External Calls to FrameSLT

128 FrameSLT 2.3

Usage description
RunNWScript runs a Node Wizard script that you have already defined in the scripts
settings file. The results should be identical to those as if the script were run with the
scripts dialog at FrameSLT > Node Wizard Scripts. For more information on writing and
managing Node Wizard scripts, see “Node Wizard scripting” on page 44.
Tip: FrameSLT will determine whether the file to be acted upon is a book or document,

and adjust processing accordingly. If you are processing a book and one or more
components are not currently open, they will be skipped by the script. If you have
the DoReporting flag set to True, you will be prompted first, otherwise the script will
simply proceed on any components that are open.

Returns
F_ApiCallClient() returns one of the following values after a RunNWScript call:

File File on which the script should run, as one of the following:
• A document or book object handle in integer form (integer

form of the FDK F_ObjHandleT type)
• A fully-qualified path name of an open document or book

In either case, the file must be currently open.

DoReporting Indicates whether reporting activities should occur, either True
or False. Reporting activities include message boxes that
report script errors and run statistics. If you specify False, no
message boxes or reports should appear at all, whether or not
the script runs successfully.

Value Meaning
0 Script ran successfully.

Note: The failure of individual events and element/attribute actions does
not return a script failure. Therefore, a return of zero does not
necessarily indicate that the script performed the actions you
intended. It merely indicates that the script was found in the
settings file and that no critical errors occurred during the script run
process.

1 General syntax error in call string.
2 Incorrect number of arguments sent with the command
6 Bad file argument. An invalid document or book ID or filename was sent.

Make sure the argument represents the ID or filename of a valid, open
document or book.

8 Bad script name. Make sure the script name sent represents a script
defined in the script settings file. Note that script names are case-sensitive.

9 The script failed to complete for an unknown reason. Possibilities include:
• The script is marked as “inactive” in the scripts settings file.
• The script run was cancelled in-progress by the user (perhaps you).

Chapter 6 External Calls to FrameSLT

FrameSLT 2.3 129

RunNWScript syntax example
returnVal = F_ApiCallClient("FrameSLT",

 "RunNWScript---MyScript---0---67108880---True");

RunNWScript code sample
The following sample runs a script named “MyScript” on all components of the active,
book, if a book is active and all components are open:

. . .

F_ObjHandleT bookId;

IntT returnVal;

UCharT buf[64];

. . .

/* Get the ID of the active book, on which we will run the script */

bookId = F_ApiGetId(0, FV_SessionId, FP_ActiveBook);

if(bookId)

{

 /* Form the argument to sent to FrameSLT. We will be running */

 /* a script named "MyScript". */

 F_Sprintf(buf, "RunNWScript---MyScript---0---%d---False", bookId);

 /* Call FrameSLT to run the script */

 returnVal = F_ApiCallClient("FrameSLT", (StringT)buf);

 /* Report how things went */

 if(returnVal == 0)

 F_ApiAlert("Script ran OK.", FF_ALERT_CONTINUE_WARN);

 else

 F_ApiAlert("An error occurred.", FF_ALERT_CONTINUE_WARN);

}

SetParam
Sets a parameter value for use during transformation or deletes all current parameter
values.

Syntax
F_ApiCallClient("FrameSLT", "SetParam---Name---[Value]")

Chapter 6 External Calls to FrameSLT

130 FrameSLT 2.3

where:

Usage description
SetParam allows you to define a parameter before performing a transformation. It has
some similarity with comparable XSLT processes where a parameter is passed to a
stylesheet before transformation, with the following important differences:

• A defined parameter is not specific to any stylesheet. Any parameters that are defined
will apply to any subsequent transformation action with TransformFile.

• All parameter definitions remain in memory until cleared with this command or a
manual transformation is run (through the FrameSLT menu). These parameter
definitions are not used for manual transformations and will be cleared out by a
manual action.

• Setting a parameter to an empty string does not delete its definition; rather, it simply
defines it as an empty string.

• Similar (in some respects) to XSLT, this command will override any FSLT_param
elements in the stylesheet(s) that define the same parameter. In other words, an
FSLT_param element will be ignored during an external-call transformation if
previously-defined with this command. Unlike XSLT, however, a stylesheet does not
need to contain a matching FSLT_param element at all if the parameter is defined by
this command and transformed with TransformFile.

For more information on parameter usage in stylesheets, see:
• “About parameters in XPath expressions” on page 76
• “Use of parameters in source file paths” on page 72
• FSLT_value-of

Returns
F_ApiCallClient() returns one of the following values after a SetParam call:

SetParam syntax examples
returnVal =

Name Parameter name, or delete_all to clear all currently-defined
parameters. The preceding dollar sign ($) used when a
parameter is referenced in a stylesheet is not required.

Value (Optional) Parameter value. This must be a static string, not an
XPath expression as supported by FSLT_param elements. If
omitted, an empty string is assumed.

Value Meaning
0 Operation was successful.

Note: 0 is also returned if a communication error occurs with FrameSLT.
If you suspect that the command didn’t work, consider calling
Hello to verify that FrameSLT is active.

1 General syntax error in call string.
2 Incorrect number of arguments sent with the command

Chapter 6 External Calls to FrameSLT

FrameSLT 2.3 131

 F_ApiCallClient("FrameSLT", "SetParam---MyParameter---SomeValue");

returnVal =

 F_ApiCallClient("FrameSLT", "SetParam---delete_all");

TransformFile
Transforms a book or document, based on a file name or object ID sent with the
command.

Syntax
F_ApiCallClient("FrameSLT",

 "TransformFile---StylesheetFile---DupeDocPath---ReportErrors");

where:

Usage description
TransformFile performs a full transformation of the specified book or document. The
stylesheet file(s) for transformation must be currently open, because this command will
not open any stylesheets. It may open source files to retrieve content, but only if your
FrameSLT preferences are set up to allow this. For more information, see “Preferences”
on page 10.
TransformFile allows you to specify a target file path, if you wish to duplicate the file
prior to transformation. The actual syntax of the path is only relevant for book
transformations, because duplicate document transformations always create a duplicate
in the same folder and apply the filename addendum specified in your preferences. If you
want to duplicate a single document, simply specify any string other than NULL. For either
a document a book, specification of NULL will cause the transformation to occur on the
source document.

StylesheetFile Stylesheet file or book of files to be transformed, as one of the
following:

• A document or book object handle in integer form (integer
form of the FDK F_ObjHandleT type)

• A fully-qualified path name of an open document or book
In either case, the file must be currently open.

DupeDocPath The fully-qualified path for the duplicated, transformed file,
applicable only for transforming books. Only books are directed
to a new folder during a “duplicate file” transform. To indicate a
duplicate file transform on a single document, specify DUPE. A
duplicate file will be created, but not saved to a new folder.
For books and documents, to indicate a “source file” transform,
specify NULL. Note that a source file transform operates directly
on your source files and should be performed with caution.

ReportErrors Indicates whether to report errors or not, either True or False.
If you specify True, FrameSLT will produce the standard error
report if errors are encountered. If you specify False, the return
value will indicate if an error occurs, but you may not know the
nature of the error.

Chapter 6 External Calls to FrameSLT

132 FrameSLT 2.3

If the transformation is successful, this call returns an integer form of the transformed
document or book ID. In the case of a duplicate document transformation, this will be the
ID of the new, duplicated document and will be different than the ID you sent in the
original call. For book transformations, the ID should be the same, but keep in mind that if
you duplicated the book, it is not the same book you started with. It is your responsibility
to handle that document or book afterwards. This command does not open, save, or
close any files, except for source files opened by the transformation itself, as applicable.
Tip: Before transformation, you can define parameter values with SetParam, applicable

if your stylesheets use parameters.

Returns
F_ApiCallClient() returns one of the following values after a TransformFile call:

Value Meaning
0 Communication error with FrameSLT
1 General syntax error in call string
2 Incorrect number of arguments sent with the command
6 Bad stylesheet file argument. An invalid document or book ID or filename

was sent. Make sure the argument represents the ID or filename of a valid,
open document or book.

11 Could not duplicate the document. You have attempted to transform a
document by making a duplicate first, but the duplication process failed.
This may occur for any number of reasons, so you may consider working
with the file manually to see if it has any overt problems. If the original
stylesheet document has unsaved changes, FrameSLT attempted to save it
before duplication, so the problem may have occurred at that point due to
server, network, or permission errors.

12 Could not find structure in the stylesheet document. FrameSLT was unable
to find any structure in the main flow of the document, so no transformation
actually took place.

13 Pre-processing of the stylesheet document failed. Before transformation,
FrameSLT performs a variety of preprocessing activities on the stylesheet,
such as parsing XPath expressions and validating transformation element
setups. Any single failure can cause the process to abort.
You can learn the specific nature of these errors by setting ReportErrors
to True, allowing FrameSLT to generate its error report.

14 General transformation error. FrameSLT encountered an unrecoverable
error during the transformation of a stylesheet document, and aborted the
transformation. You can learn the specific nature of these errors by setting
ReportErrors to True, allowing FrameSLT to generate its error report.

Chapter 6 External Calls to FrameSLT

FrameSLT 2.3 133

TransformFile syntax examples
TransformFile calls are syntactically challenging because of the potential presence of
file paths, which contain backslashes. In a string in C, backslashes must be sent as an
escape sequence, represented by a double backslash (\\). For example, the following
are some examples of TransformFile calls:

//Document transform by ID, source file

F_ApiCallClient("FrameSLT",

 "TransformFile---1842312---NULL---True");

//Document transform by ID, duplicate doc

F_ApiCallClient("FrameSLT",

 "TransformFile---1842312--Dupe---True");

//Document transform by file name, source file

F_ApiCallClient("FrameSLT",

 "TransformFile---C:\\MyDocs\\Stylesheet.fm---NULL---True");

//Book transform by ID, source file

F_ApiCallClient("FrameSLT",

 "TransformFile---3425343---NULL---True");

//Book transform by ID, duplicate book

F_ApiCallClient("FrameSLT",

 "TransformFile---3425343---C:\\MyXformedDocs\\---True");

//Book transform, duplicate book

F_ApiCallClient("FrameSLT",

 "TransformFile---C:\\MyDocs\\MyBook.book---C:\\MyXformedDocs\\---True");

TransformFile code samples
The following example shows the basic syntax of an actual TransformFile call, in C
FDK format, to transform the active document without duplicating it.

. . .

F_ObjHandleT docId;

UCharT arg[100];

15 Error during book preparation. FrameSLT performs a set of preliminary
steps to prepare a book before the actual transformation begins. An error
during this process is usually unrecoverable and causes the transformation
to abort. You can learn the specific nature of these errors by setting
ReportErrors to True, allowing FrameSLT to generate its error report.
Note: If you are attempting to transform a book, and you have provided a

folder path for duplication of the book, a single mistake in the path
will cause this error. Make absolutely sure that the path for the new
book is exactly correct. For more information on specifying this
path, see “TransformFile syntax examples” on page 133.

Any
number
greater
than 15

An integer form of the transformed document or book ID. If you transformed
a source file, this ID should be the same as the ID you sent with
TransformFile. A returned ID generally indicates that the transformation
was successful.

Value Meaning

Chapter 6 External Calls to FrameSLT

134 FrameSLT 2.3

IntT returnVal;

. . .

/* Get a document ID */

docId = F_ApiGetId(0, FV_SessionId, FP_ActiveDoc);

/* Form the argument for the FindNextNode call */

F_Sprintf(arg, "TransformFile---%d---NULL---True", docId);

/* Call FrameSLT to transform the file */

returnVal = F_ApiCallClient("FrameSLT", (StringT)arg);

/* Report */

if(returnVal > 15)

 F_ApiAlert("Transformation successful.", FF_ALERT_CONTINUE_WARN);

else

 F_ApiAlert("Transformation failed. Please see the report.",

 FF_ALERT_CONTINUE_WARN);

. . .

The following code represents the same functionality in FrameScript format:
Note: Many thanks to Rick Quatro of Carmen Publishing, www.frameexpert.com, for

this FrameScript translation of the previous FDK code sample.
// Get the ID of the active document.

Set docId = ActiveDoc;

If(docId = 0)

 MsgBox 'There is no active document.' Mode(Warn);

 LeaveSub;

EndIf

// Convert the document ID to an integer.

New Integer NewVar(docInt) Value(docId);

// Form the argument for the TransformFile call.

Set arg = 'TransformFile---'+docInt+'---NULL---True';

// Call FrameSLT to transform the active document.

CallClient FrameClient('FrameSLT') Message(arg) ReturnVal(iReturnVal);

// Report

If iReturnVal > 15

 MsgBox 'Transformation sucessful.' Mode(Note);

Else

 MsgBox 'Transformation failed. Please see the report.'

 Mode(Note);

EndIf

http://www.frameexpert.com

Chapter 6 External Calls to FrameSLT

FrameSLT 2.3 135

Detailed example—Calling FrameSLT (FDK)
The following example contains C language code for use with the FDK. For the same
sample in FrameScript form, see “Detailed example—Calling FrameSLT (FrameScript)”
on page 137.
This example uses two different XPath expressions to find Emphasis elements and apply
strikethrough text to them. The two XPath expressions used are:

//Section/Body

Emphasis

In summary, the first expression is used to find Body elements that are children of
Sections. Then, it uses the second expression to find Emphasis element children of those
Body elements. Note that these two XPath expressions could be combined into one;
however, this example uses them separately to demonstrate most available FrameSLT
calls, and to show how two different XPath expressions can be used simultaneously.
If you want to use this sample function on a different structure, you can simply change the
XPath expressions as appropriate.
Tip: FrameSLT includes a sample file, External_Calls_Sample.fm, designed to

work with this code. If installed correctly, you should find it in your SampleFiles
folder.

VoidT FrameSLT_Sample_Calls()

{

 F_ObjHandleT docId,

 bodyElemId,

 emphasisElemId;

 UIntT xPathSequence1,

 xPathSequence2,

 returnVal;

 UCharT sequence1Arg[64],

 sequence2Arg[64],

 resetSequenceArg[64];

 F_TextRangeT tr;

 F_PropValT strikethroughProp;

 /* Get the ID of the active document */

 docId = F_ApiGetId(0, FV_SessionId, FP_ActiveDoc);

 if(!docId)

 {

 F_ApiAlert("No active document", FF_ALERT_CONTINUE_WARN);

 return;

 }

Chapter 6 External Calls to FrameSLT

136 FrameSLT 2.3

 /* Parse the XPath expressions and retrieve the sequence numbers */

 xPathSequence1 = F_ApiCallClient("FrameSLT",

 "ParseXPath---//Section/Body---True");

 xPathSequence2 = F_ApiCallClient("FrameSLT",

 "ParseXPath---Emphasis---True");

 /* If a parsing error occurred, the return value will be

 * less than 21 (20 is the highest error code) */

 if(xPathSequence1 < 21 || xPathSequence2 < 21)

 {

 F_ApiAlert("Error parsing XPath", FF_ALERT_CONTINUE_WARN);

 return;

 }

 /* Set up the text property structure for applying strikethrough text.

 * Used later. */

 strikethroughProp.propIdent.num = FP_Strikethrough;

 strikethroughProp.propVal.valType = FT_Integer;

 strikethroughProp.propVal.u.ival = True;

 /* Set up the argument for the first FindNextNode call, for the

 * first XPath expression. No context node ID is necessary because

 * the XPath begins with a "go-to-root" axis. */

 F_Sprintf(sequence1Arg, "FindNextNode---%d---%d---0",

 xPathSequence1, docId);

 /* Set up the argument that will be used later to reset the second

 * XPath sequence */

 F_Sprintf(resetSequenceArg, "ResetSequence---%d", xPathSequence2);

 /* Make an initial call to find the first applicable Body element */

 bodyElemId = F_ApiCallClient("FrameSLT", (StringT)sequence1Arg);

 /* Launch the "outer loop", which will step through the main

 * flow looking for Body elements that are children of Sections. */

 while(bodyElemId > 20)

 {

 /* Reset the second XPath sequence, in preparation for a new

 * query, using the current Body element as the context node */

 returnVal = F_ApiCallClient("FrameSLT", (StringT)resetSequenceArg);

 if(returnVal != 0)

 {

 F_ApiAlert("Error resetting sequence", FF_ALERT_CONTINUE_WARN);

 break;

 }

Chapter 6 External Calls to FrameSLT

FrameSLT 2.3 137

 /* Set up the argument to query with the second sequence, using the

 * current Body element as the context */

 F_Sprintf(sequence2Arg, "FindNextNode---%d---%d---%d",

 xPathSequence2, docId, bodyElemId);

 /* Make an initial call to find the first applicable Emphasis element */

 emphasisElemId = F_ApiCallClient("FrameSLT", (StringT)sequence2Arg);

 /* Step through all emphasis children, applying strikethrough text */

 while(emphasisElemId > 20)

 {

 /* Get the text range of the Emphasis element */

 tr = F_ApiGetTextRange(docId, emphasisElemId, FP_TextRange);

 /* Apply strikethrough text */

 F_ApiSetTextPropVal(docId, &tr, &strikethroughProp);

 /* Query for the next Emphasis element */

 emphasisElemId = F_ApiCallClient("FrameSLT", (StringT)sequence2Arg);

 }

 /* Back in the main loop, query for the next Body element*/

 bodyElemId = F_ApiCallClient("FrameSLT", (StringT)sequence1Arg);

 } /* End main loop */

 /* Free the strikethrough PropVal structure */

 F_ApiDeallocatePropVal(&strikethroughProp);

}

Detailed example—Calling FrameSLT
(FrameScript)

Note: Many thanks to Rick Quatro of Carmen Publishing, www.frameexpert.com, for
this FrameScript translation of the previous FDK code sample.

The following example contains FrameScript code. For the same sample in C language
form, see “Detailed example—Calling FrameSLT (FDK)” on page 135.
This example uses two different XPath expressions to find Emphasis elements and apply
strikethrough text to them. The two XPath expressions used are:

//Section/Body

Emphasis

In summary, the first expression is used to find Body elements that are children of
Sections. Then, it uses the second expression to find Emphasis elements within those
Body elements. Note that these two XPath expressions could be combined into one;
however, this example uses them separately to demonstrate all available FrameSLT calls,
and to show how two different XPath expressions can be used simultaneously.

http://www.frameexpert.com

Chapter 6 External Calls to FrameSLT

138 FrameSLT 2.3

If you want to use this sample function on a different structure, you can simply change the
XPath expressions as appropriate.
Tip: FrameSLT includes a sample file, External_Calls_Sample.fm, designed to

work with this script. If installed correctly, you should find it in your SampleFiles
folder.

// Get the ID of the active document.

Set docId = ActiveDoc;

If(docId = 0)

 MsgBox 'There is no active document.' Mode(Warn);

 LeaveSub;

EndIf

// Convert the document ID to an integer.

New Integer NewVar(docInt) Value(docId);

// Parse the XPath expressions and retrieve the sequence numbers.

CallClient FrameClient('FrameSLT')

 Message('ParseXPath---//Section/Body---True')

 ReturnVal(xPathSequence1);

CallClient FrameClient('FrameSLT')

 Message('ParseXPath---Emphasis---True')

 ReturnVal(xPathSequence2);

// If a parsing error occurred, the return value will be less

// than 21 (20 is the highest error code).

If (xPathSequence1 < 21) or (xPathSequence2 < 21)

 MsgBox 'Error parsing XPath.' Mode(Warn);

 LeaveSub;

EndIf

// Make a property list to be used for applying the strikethrough text.

New PropertyList NewVar(strikethroughProp)

 Strikethrough(True);

// Set up the argument for the first FindNextNode call, for the

// first XPath expression. No context node ID is necessary

// because the XPath begins with a "go-to-root" axis.

Set sequence1Arg = 'FindNextNode---'+xPathSequence1+'---'+

 docInt+'---0';

// Set up the argument that will be used later to reset the second

// XPath sequence.

Set resetSequenceArg = 'ResetSequence---'+xPathSequence2;

// Make an initial call to find the first applicable Body element.

CallClient FrameClient('FrameSLT') Message(sequence1Arg)

 ReturnVal(bodyElemId);

Chapter 6 External Calls to FrameSLT

FrameSLT 2.3 139

// Launch the "outer loop" which will step through the main flow

// looking for Body elements that are children of Sections.

Loop While(bodyElemId > 20)

 // Reset the second XPath sequence, in preparation for a new query,

 // using the current Body element as the context node.

 CallClient FrameClient('FrameSLT') Message(resetSequenceArg)

 ReturnVal(returnVal);

 If returnVal not= 0

 MsgBox 'Error resetting sequence.' Mode(Warn);

 LeaveLoop;

 EndIf

 // Set up the argument to query with the second sequence, using the

 // current Body element as the context.

 Set sequence2Arg = 'FindNextNode---'+xPathSequence2+'---'+

 docInt+'---'+bodyElemId;

 // Make an initial call to find the first applicable Emphasis element.

 CallClient FrameClient('FrameSLT') Message(sequence2Arg)

 ReturnVal(emphasisElemId);

 // Step through all Emphasis children, applying strikethrough text.

 Loop While(emphasisElemId > 20)

 New Object NewVar(emphasisElemId) IntValue(emphasisElemId)

 DocObject(docId);

 // Apply the strikethrough properties.

 Apply TextProperties TextRange(emphasisElemId.TextRange)

 Properties(strikethroughProp);

 // Find the next Emphasis element.

 CallClient FrameClient('FrameSLT') Message(sequence2Arg)

 ReturnVal(emphasisElemId);

 EndLoop

 // Back in the main loop, query for the next Body element.

 CallClient FrameClient('FrameSLT') Message(sequence1Arg)

 ReturnVal(bodyElemId);

EndLoop

Chapter 6 External Calls to FrameSLT

140 FrameSLT 2.3

FrameSLT 2.3

Index

Symbols
. axis abbreviation 22
.. axis abbreviation 22
// axis abbreviation 22
@ symbol 22

A

about FrameSLT 9
About XPath 17
AllocateNodeHandlers external call 117
attribute actions, Node Wizard 38, 39
auto-apply conditions 58
axes, supported by FrameSLT 19

B
breadcrumbs 75
bugs, in FrameSLT XPath 26

C

calling FrameSLT - see external calls
cascading contexts 74
ChangeCallDelimiter external call 117
condition management

about 58
expression examples 62
processing details 61
settings 58

contains() function 24

D

DeallocateNodeHandlers external call
118

E
element actions, Node Wizard 38
external calls

AllocateNodeHandlers 117
call reference 116
ChangeCallDelimiter 117
DeallocateNodeHandlers 118
detailed example (FDK) 135

detailed example (FrameScript) 137
FindNextNode 118
general information 116
Hello 122
how to send a call 115
ParseXPath 123
ResetSequence 124
RetrieveAttrMatch 125
RunNWScript 127
SetParam 129
TransformFile 131
typical sequence 116
with FrameScript 115

F
FindNextNode external call 118
flows

Node Wizard 35
fmprop axis 21
FrameScript calls to FrameSLT 115
FrameSLT warning 10
FSLT_choose, details 81
FSLT_copy-of, details 83
FSLT_create-xref, details 85
FSLT_for-each, details 87
FSLT_if, details 89
FSLT_otherwise, details 91
FSLT_param, details 92
FSLT_set-attribute, details 93
FSLT_set-marker, details 95
FSLT_sort, details 97
FSLT_table, details 99
FSLT_tablebody, details 103
FSLT_tablecell, details 103
FSLT_tablefooting, details 104
FSLT_tablerow, details 104
FSLT_tabletitle, details 105
FSLT_template, details 106
FSLT_value-of, details 110
FSLT_when, details 113

G

142 FrameSLT 2.3

getting started 9

H
Hello external call 122

I
important warnings 10

L
last() function 23
local settings 10
logical test operators 23

M

Match 37
Match All 35
Match First, Node Wizard 34
match history, Node Wizard 37
Match Next, Node Wizard 34
memory settings 15

N
node terminology 19
Node Wizard

about 33
actions 38
attribute actions 39
attribute nodes 37
conditional text 44
contexts 34
element actions 38
flows 35
Match All 35
Match First vs. Match Next 34
match history 37
Perform Actions On All 43
scripting 44
searching 33
XPath parsing 33

Node Wizard scripting
about 45
about the scripts settings file 47
autorunning 50
copying to the clipboard 46

running scripts 47
script-only actions 46
subevents 45
writing and editing scripts 48

not() function 24

O
options

transformation 10
warning display 10

P
parameters

in source file paths 72
in XPath expressions 76
set with external call 129

parenthetical expressions 25
ParseXPath external call 123
position() function 23
preferences 10
prefix consideration 25

R
ResetSequence external call 124
RetrieveAttrMatch external call 125
RunNWScript external call 127

S
scripting with the Node Wizard 44
searching with the Node Wizard 33
SetParam external call 129
source files, for transformation 71
starting contexts for transformation

XPath 72
starts-with() function 24
stylesheets

about 69
customizing the EDD 69

suffix consideration 25
supported axes 19
supported XPath functions 23

T

tables, creating 99

FrameSLT 2.3 143

text insets, replacing with FrameSLT 75
transformation elements

editing 70
FSLT_choose 81
FSLT_copy-of 83
FSLT_create-xref 85
FSLT_for-each 87
FSLT_if 89
FSLT_otherwise 91
FSLT_param 92
FSLT_set-attribute 93
FSLT_set-marker 95
FSLT_sort 97
FSLT_table 99
FSLT_tablebody 103
FSLT_tablecell 103
FSLT_tablefooting 104
FSLT_tablerow 104
FSLT_tabletitle 105
FSLT_template 106
FSLT_value-of 110
FSLT_when 113
parameters in source file paths 72
parameters in XPath expressions 76
preserving after transformation 75

transformations
cascading contexts 74
editing transformation elements 70
element definitions

EDD, for stylesheets 69
generating tables 99
launching 70
output 67
preliminary steps 68
source files 71

TransformFile external call 131

W
w3 consortium 17
warning suppression 10
warnings 10
what is FrameSLT? 9
wildcards 25

X

144 FrameSLT 2.3

XPath
about 17
axis abbreviations 22
examples 28
fmprop axis 21
getting started 17
known issues 26
logical test operators 23
parsing test 33
quick primer 17
supported axes 19
supported functions 23
unsupported syntax 25
wildcards 25

XPath - general information 17
XSLT, vs. FrameSLT 67

	Table of Contents
	Chapter 1 Introduction to FrameSLT
	What is FrameSLT?
	Getting started with FrameSLT
	FrameSLT WARNING!
	General information
	Preferences
	Warning suppression
	Memory settings

	Chapter 2 About FrameSLT XPath
	About XPath
	XPath quick primer
	Nodes vs. elements-Terminology
	Supported axes
	Special “fmprop” axis
	Abbreviated axes
	Supported logical test operators
	Supported functions
	Node position functions
	Node content functions
	Boolean functions

	Node test wildcards
	EDD-applied prefixes/suffixes and node testing
	Unsupported syntax
	Limitations and known issues
	Testing node text with non-quoted string literals
	Testing element node text
	Finding text() nodes with no siblings
	Comparing two nodes without a bracketed predicate

	FrameSLT XPath examples

	Chapter 3 The Node Wizard and Other Utilities
	The Node Wizard
	XPath parsing
	Node Wizard searching
	Match First, Match Next, and context nodes
	Match All
	About the Node Wizard and document flows
	Changing documents/elements during a query
	Match history
	Attribute nodes

	Performing node actions
	Element actions
	Attribute actions
	Important warning about node actions
	“Perform Action(s) and Find Next” button
	Query behavior during “Perform Actions On All” operations
	Element actions that preclude attribute actions
	Wrapping elements and performing an attribute action
	A word on conditional text

	Node Wizard scripting
	About Node Wizard scripts
	About subevents
	Element/attribute actions supported by scripts only

	About the script settings file
	Running Node Wizard scripts within FrameMaker
	Writing and editing scripts
	Highest level elements
	Script name and description
	General settings
	Autorun triggers
	Script event settings

	FrameSLT condition management
	Condition management settings
	Processing details
	Document- and book-wide actions
	Element-level actions

	Examples of expressions and settings
	Important note about conditions management features versus the Node Wizard
	Tips on condition management

	Chapter 4 Transformations
	About FrameSLT vs. XSLT
	Required steps to perform transformations
	About stylesheets and transformations
	Customizing an EDD to allow transformation elements
	Launching transformations
	Editing transformation elements
	Source file details
	Querying the “current” document
	Relative vs. absolute paths
	Opening, closing, and saving source files
	Use of parameters in source file paths

	About starting contexts
	About cascading contexts
	About preserving transformation elements after a transformation
	About parameters in XPath expressions
	Using “FSLT_template” markers
	How “FSLT_template” markers work
	Creating the marker type
	Adding markers to the stylesheet

	Chapter 5 Transformation Element Reference
	FSLT_choose
	FSLT_choose processing
	FSLT_choose attributes
	FSLT_choose example

	FSLT_copy-of
	FSLT_copy-of processing
	FSLT_copy-of attributes
	FSLT_copy-of example

	FSLT_create-xref
	FSLT_create-xref processing
	Special note on generated cross-references
	FSLT_create-xref attributes
	FSLT_create-xref example

	FSLT_for-each
	FSLT_for-each processing
	FSLT_for-each attributes
	FSLT_for-each example

	FSLT_if
	FSLT_if processing
	FSLT_if attributes
	FSLT_if example

	FSLT_otherwise
	FSLT_otherwise processing
	FSLT_otherwise attributes
	FSLT_otherwise example

	FSLT_param
	FSLT_param processing
	FSLT_param attributes

	FSLT_set-attribute
	FSLT_set-attribute processing
	FSLT_set-attribute attributes
	FSLT_set-attribute example

	FSLT_set-marker
	FSLT_set-marker processing
	FSLT_set-marker attributes
	FSLT_set-marker example

	FSLT_sort
	FSLT_sort processing
	Special note on using FSLT_sort with FSLT_tablerow
	FSLT_sort attributes
	FSLT_sort example

	FSLT_table
	FSLT_table structure and requirements
	Basic steps for creating a valid FSLT_table structure
	Complete FSLT_table structure example
	Generating rows with FSLT_tablerow
	Sorting generated table rows with FSLT_sort
	Other FSLT table component element setups
	Checking an FSLT_table structure before transformation

	FSLT_table processing
	FSLT_table attributes
	FSLT_table example

	FSLT_tablebody
	FSLT_tablebody processing
	FSLT_tablebody attributes
	FSLT_tablebody example

	FSLT_tablecell
	FSLT_tablecell processing
	FSLT_tablecell attributes
	FSLT_tablecell example

	FSLT_tableheading
	FSLT_tableheading processing
	FSLT_tableheading attributes
	FSLT_tableheading example

	FSLT_tablefooting
	FSLT_tablefooting processing
	FSLT_tablefooting attributes
	FSLT_tablefooting example

	FSLT_tablerow
	FSLT_tablerow processing
	FSLT_tablerow attributes
	FSLT_tablerow example

	FSLT_tabletitle
	FSLT_tabletitle processing
	FSLT_tabletitle attributes
	FSLT_tabletitle example

	FSLT_template
	FSLT_template processing
	Locations for “source” FSLT_template elements
	About the “FSLT_template” flow
	Using FSLT_template to facilitate complex re-transformations

	FSLT_template attributes
	FSLT_template example

	FSLT_value-of
	FSLT_value-of processing
	FSLT_value-of attributes
	FSLT_value-of example

	FSLT_when
	FSLT_when processing
	FSLT_when attributes
	FSLT_when example

	Chapter 6 External Calls to FrameSLT
	How to send an external call to FrameSLT
	General information on external calls
	Typical sequences of events
	Call reference
	AllocateNodeHandlers
	Syntax
	Usage description
	Returns

	ChangeCallDelimiter
	Syntax
	Returns
	ChangeCallDelimiter syntax example

	DeallocateNodeHandlers
	Syntax
	Usage description
	Returns

	FindNextNode
	Syntax
	Usage description
	Returns
	FindNextNode syntax examples
	FindNextNode code sample

	Hello
	Syntax
	Usage description
	Returns
	Hello syntax example

	ParseXPath
	Syntax
	Usage description
	Returns
	ParseXPath syntax example

	ResetSequence
	Syntax
	Usage description
	Returns

	RetrieveAttrMatch
	Syntax
	Usage description
	Returns
	RetrieveAttrMatch code sample

	RunNWScript
	Syntax
	Usage description
	Returns
	RunNWScript syntax example
	RunNWScript code sample

	SetParam
	Syntax
	Usage description
	Returns
	SetParam syntax examples

	TransformFile
	Syntax
	Usage description
	Returns
	TransformFile syntax examples
	TransformFile code samples

	Detailed example-Calling FrameSLT (FDK)
	Detailed example-Calling FrameSLT (FrameScript)

	Index

